请教一道大学工程数学概率题?
1个回答
展开全部
此题目为关于统计量均值的单侧假设检验
原假设Ho:改进工艺后强力没有显著提高
因为总体标准差不变,测的数据n=100为大样本,故取标准正态统计量Z
Z = √n*(u-uo)/σ
其中σ = 1.19,n = 100,uo = 6
现在显著水平为α=0.05,则统计量的临界值为Z(0.05),即标准正态分布取概率为0.95时对应的分位数,查表知为1.645
而将u = 6.35带入Z统计量得实际获得的统计量值为2.94>1.645,所以处在假设的拒绝域中
所以可以拒绝假设,即认为强力有显著提高。
原假设Ho:改进工艺后强力没有显著提高
因为总体标准差不变,测的数据n=100为大样本,故取标准正态统计量Z
Z = √n*(u-uo)/σ
其中σ = 1.19,n = 100,uo = 6
现在显著水平为α=0.05,则统计量的临界值为Z(0.05),即标准正态分布取概率为0.95时对应的分位数,查表知为1.645
而将u = 6.35带入Z统计量得实际获得的统计量值为2.94>1.645,所以处在假设的拒绝域中
所以可以拒绝假设,即认为强力有显著提高。
追问
什么
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询