红外测温仪原理
2023-12-20 · 百度认证:武汉高德智感科技有限公司官方账号
自然界中一切温度高于绝对零度(-273.15°C)的物体都能辐射红外能量,红外辐射的物理本质是热辐射,也是一种电磁波。
红外测温仪将红外热辐射转换成相应的电信号,然后经过放大和视频处理,形成可供肉眼观察的视频图像。通俗来讲,就是将不可见的红外辐射变为可见的热像图,并且能反映出目标表面的温度分布状态。
这种热像图与物体表面的热分布场相对应。热图像上的不同颜色代表被测物体的不同温度。通过查看热图像,可以直观地观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。
相比利用可见光的设备,由于红外热成像技术是一种对目标的被动式的非接触的检测与识别,因而隐蔽性好,不容易被发现,从而使红外热成像仪的操作者更安全、更有效。
此外,在完全无光的夜晚,或是在雨、雪等烟云密布的恶劣环境,能够清晰地观察到所需监控的目标。正是由于这个特点,红外热像仪能真正做到24h全天候监控。
而随着红外热成像技术的不断发展和成本下探,热像仪开始广泛应用于电力、工业、农业、安防、医疗、消防、考古、交通、地质等民用领域。
很多热像仪品牌,都有丰富的应用案例。如高德智感,能为各行各业提供性能强、体验佳、服务优的红外热成像产品和解决方案,在数十个重点行业中都有丰富应用案例和用户反馈。
工作原理
DM300红外测温仪红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。
在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布 —— 与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为 1 。
但是,自然界中存在的实际物体,几乎都不是黑体,为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于 1 的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。影响发射率的主要因素在:材料种类、表面粗糙度、理化结构和材料厚度等。
当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。
但自然界中一切温度高于绝对零度(-273.15°C)的物体都会向外辐射红外能量,红外热成像技术就是基于探测物与背景的温差来成像的,其核心技术就是红外焦平面探测器的生产和研发。
红外探测器可以探测、收集目标物体的红外能量,将物体表面的红外热辐射转换成相应的电信号,然后经过放大和视频处理,形成可供肉眼观察的视频图像。通俗来讲,就是将不可见的红外辐射变为可见的热像图,并且能反映出目标表面的温度分布状态。
由于红外热成像是利用热量来传感的,不受可见光影响,因此可以无惧黑暗、眩光、雾霾等恶劣条件,实现”夜视“功能,在智能驾驶、安防监控、户外观察等领域都有广泛应用。
热成像的另一大功能就是测温,炼钢、高炉、冶金、石化等工业场景中,经常存在设备测温需求。 而人工巡检费时费力,还存在安全隐患,热成像能很好地解决这些问题,可以快速、安全、直观地查找判断设备过热故障。
红外线测温的发展
两百多年前,英国物理学家F.W.赫胥尔在热的观点研究各种色光时,首次发现了红外线,自此打开了人类利用红外线的大门。
而在第二次世界大战后,美国对于红外线的应用研究非常入迷,想要把它应用到军事领域,提升自己的军事实力以及战场上的优势。他们研究了红外寻视系统,这个红外寻视系统是利用光学机械系统对被测目标的红外辐射扫描。这些扫描经过一系列仪器和信号的转换,就可以显示出目标的温度图像。这算的上是简单意义上的红外线测温仪,只不过不能显示出准确的温度。
热成像仪器
晚于美国几年,瑞典也研究出了可以测温的热像仪,受制于当时的技术和器件成本的原因,这项技术只被用于了军事领域,无缘于民用。而到了90年代的中期,美国对这项研究有了极大的突破。
美国首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的一种凝成像装置,这项技术更加先进,只需要对准待测图像,就能得出一系列数据。不仅仅如此,它把测温仪的体积做了很大优化,变得更加便携。
事实上上面仅是对主要的进展做了概述,在这其中也有很多的进步,没有一一的罗列出来。经过这么多年的技术突破,现在的测温仪做的特别小巧,测量精度更加的高,耗费时间更加的短。
红外线测温仪测量原理
了解原理前,先来了解其中一个理论。在自然界中,任何高于绝对零度(-273℃)的物体就存在分子和原子无规则的运动,物体都在不断地向外释放红外辐射能量。辐射能量的大小及其波长与物体表面的温度有着密切的关系,例如人体的正常温度在36~37℃之间,放射的红外波长为9~13чm。
红外线测温仪主要由显示输出电路、光学系统、光电探测器、信号放大处理放大器等部分组成,测量时对准被测物体即可实现测温。上面我们提到人体可以时刻不断地向外辐射红外能量,而红外线测温仪的光学系统可以采集这些辐射能量。
光学系统将采集到的能量聚焦送到光电探测器上转变为一系列的电信号,这些电信号经过信号处理电路内设置的算法处理,再经过显示输出电路,就可以在测温仪的LCD屏幕上显示出被测者的体温。

大概结构
这里需要说明的是,它利用的是人体自身发出的红外线,而不是体温枪自身发出的,因此它是对人体没有伤害的。而那个发出的红光,仅仅是作为瞄准用的。
这一点我们也可以这样的去理解,我们把人的眼睛比作一个测温仪的探测头,大脑比作测温仪内部信号处理电路、嘴巴比作测温仪LCD显示屏。

测量过程
桌子上放了几个不同大小的苹果,这些苹果大小代表不同的温度。人眼可以看到苹果,将看到的东西传到大脑进行处理,大脑中本身就有对大小判断的能力(也就是测温仪内部电路本身具有的功能)进而可以得出几个苹果谁大谁小,也就是温度的高低。