在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP
在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x...
在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如图1,当m=2时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
12•嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如图1,当m=
2
时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
(最主要是解决最后第2题第2问,前面给大家做一个铺垫参考~谢谢啦) 展开
(1)如图1,当m=2时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
12•嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如图1,当m=
2
时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
(最主要是解决最后第2题第2问,前面给大家做一个铺垫参考~谢谢啦) 展开
2个回答
展开全部
按照你的要求,前面的不做解答:
②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(-1/m,1/m^2)代入,得:
m^2=mk+b,
1/m^2=(-1/m)k+b
解得b=1,∴M(0,1)
∵QB/MO=OB/AO=1/m^2, ∠QBO=∠MOA=90°,
∴△QBO∽△MOA
∴∠MAO=∠QOB,
∴QO∥MA
同理可证:EM∥OD
又∵∠EOD=90°,
∴四边形ODME是矩形.
②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(-1/m,1/m^2)代入,得:
m^2=mk+b,
1/m^2=(-1/m)k+b
解得b=1,∴M(0,1)
∵QB/MO=OB/AO=1/m^2, ∠QBO=∠MOA=90°,
∴△QBO∽△MOA
∴∠MAO=∠QOB,
∴QO∥MA
同理可证:EM∥OD
又∵∠EOD=90°,
∴四边形ODME是矩形.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询