线性代数矩阵求逆矩阵,请问这两题怎么写?

 我来答
执灯一盏问沧桑
高能答主

2020-10-06 · 致力于成为全知道最会答题的人
知道大有可为答主
回答量:3.3万
采纳率:21%
帮助的人:1104万
展开全部
设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵[1]。
中文名
逆矩阵[1]
所属学科
线性代数[1]
学科分类
高等数学类[1]
相关概念
非奇异矩阵,满秩矩阵[2]
快速
导航
相关性质定理
定义
单位矩阵的逆矩阵是它本身[1]。
[1]
则:
[1]
[1]
相关性质
(1)A与B的地位是平等的,故A、B两矩阵互为逆矩阵,也称A是B的逆矩阵[3];
(2)单位矩阵E是可逆的,即
[3]。
(3)零矩阵是不可逆的,即取不到B,使OB=BO=E[3]。
(4)如果A可逆,那么A的逆矩阵是唯一的[3]。
事实上,设B、C都是A的逆矩阵,则有B=BE =B(AC)=(BA)C=EC=C[3]。
A的逆矩阵记为
,即若AB=BA=E,则
[3]。
可逆矩阵还具有以下性质[4]:
(1)若A可逆,则A-1亦可逆,且(A-1)-1=A[4]。
(2)若A可逆,则AT亦可逆,且(AT)-1=(A-1)T[4]。
(3)若A、B为同阶方阵且均可逆,则AB亦可逆,且(AB)-1=B-1 A-1 [4]。
定理
(1)逆矩阵的唯一性[5]。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1[5]。
(2)n阶方阵A可逆的充分必要条件是r(A)=m[2]。
对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵[2]。
(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵[2]。
推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积[2]。
纠错
参考资料
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式