tan234°=a,那么sin(-206°)+cos(-206°)的值为 求帮忙
展开全部
题目应是 tan1234°=a,那么sin(-206°)+cos(-206°)的值为
tan1234=tan(8*180-206)=tan(-206)=a
sin(-206)/cos(-206)=a
sin(-206)=acos(-206)
[sin(-206)]^2+[cos(-206)]^2=1
sin(-206)=acos(-206)
[cos(-206)]^2=1/(a^2+1)
cos(-206)=-cos26<0
cos(-206)=-1/√(a^2+1)
所以sin(-206)+cos(-206)=acos(-206)+cos(-206)=-(a+1)/√(a^2+1)
tan1234=tan(8*180-206)=tan(-206)=a
sin(-206)/cos(-206)=a
sin(-206)=acos(-206)
[sin(-206)]^2+[cos(-206)]^2=1
sin(-206)=acos(-206)
[cos(-206)]^2=1/(a^2+1)
cos(-206)=-cos26<0
cos(-206)=-1/√(a^2+1)
所以sin(-206)+cos(-206)=acos(-206)+cos(-206)=-(a+1)/√(a^2+1)
追问
[cos(-206)]^2=1/(a^2+1)
这个怎么来的
追答
[sin(-206)]^2+[cos(-206)]^2=1
sin(-206)=acos(-206)
[acos(-206)]^2+[cos(-206)]^2=1
a^2[cos(-206)]^2+[cos(-206)]^2=1
(a^2+1)[cos(-206)]^2=1
[cos(-206)]^2=1/(a^2+1)
展开全部
°tan1234=tan(8*180-206)=tan(-206)=a
sin(-206)/cos(-206)=a
sin(-206)=acos(-206)
[sin(-206)]^2+[cos(-206)]^2=1
sin(-206)=acos(-206)
[cos(-206)]^2=1/(a^2+1)
cos(-206)=-cos26<0
cos(-206)=-1/√(a^2+1)
所以sin(-206)+cos(-206)=acos(-206)+cos(-206)=-(a+1)/√(a^2+1)
sin(-206)/cos(-206)=a
sin(-206)=acos(-206)
[sin(-206)]^2+[cos(-206)]^2=1
sin(-206)=acos(-206)
[cos(-206)]^2=1/(a^2+1)
cos(-206)=-cos26<0
cos(-206)=-1/√(a^2+1)
所以sin(-206)+cos(-206)=acos(-206)+cos(-206)=-(a+1)/√(a^2+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询