不定积分,(sin x+x^2)/(xcosx)^2.上限是派/4.下限是-派/4.
1个回答
展开全部
原式=∫(-π/4,π/4)sinx/(xcosx)²dx+∫(-π/4,π/4)x²/(xcosx)²dx
=∫(-π/4,π/4)sinx/(xcosx)²dx+∫(-π/4,π/4)dx/cos²x
∵若f(x)是奇函数,则∫(-a,a)f(x)de=0
由于sinx/(xcosx)²是奇函数
∴∫(-π/4,π/4)sinx/(xcosx)²dx=0
∴原式=0+∫(-π/4,π/4)dx/cos²x
=∫(-π/4,π/4)d(tanx)
=(tanx)|(-π/4,π/4)
=1-(-1)
=2
=∫(-π/4,π/4)sinx/(xcosx)²dx+∫(-π/4,π/4)dx/cos²x
∵若f(x)是奇函数,则∫(-a,a)f(x)de=0
由于sinx/(xcosx)²是奇函数
∴∫(-π/4,π/4)sinx/(xcosx)²dx=0
∴原式=0+∫(-π/4,π/4)dx/cos²x
=∫(-π/4,π/4)d(tanx)
=(tanx)|(-π/4,π/4)
=1-(-1)
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询