f(x)在[0,+∞)有连续导数,f'(x)>=k>0,f(0)<0,证明
f(x)在[0,+∞)有连续导数,f'(x)>=k>0,f(0)<0,证明f(x)在(0,+∞)仅有一个零点...
f(x)在[0,+∞)有连续导数,f'(x)>=k>0,f(0)<0,证明 f(x)在(0,+∞)仅有一个零点
展开
展开全部
我的证明如下
唯一性:
因为f'(x)>=k>0,所以f(x)在[0,+∞)是严格单调增加的,也就是,对应一个y值只有唯一的x与之对应,也就是说,如果有x使f(x)=0,那么这样的x只有一个。
存在性:
f'(x)>=k>0,通过积分f(x)=kx+c,又因为f(0)以知所以c=f(0),即f(x)=kx+f(0),当x趋于正无穷时,f(x)趋于正无穷,即f(正无穷)>0,f(0)<0根据连续函数的介值定理,必有一x属于[0,+∞),使f(x)=0
综上所述,f(x)在[0,+∞)只有一个零点
唯一性:
因为f'(x)>=k>0,所以f(x)在[0,+∞)是严格单调增加的,也就是,对应一个y值只有唯一的x与之对应,也就是说,如果有x使f(x)=0,那么这样的x只有一个。
存在性:
f'(x)>=k>0,通过积分f(x)=kx+c,又因为f(0)以知所以c=f(0),即f(x)=kx+f(0),当x趋于正无穷时,f(x)趋于正无穷,即f(正无穷)>0,f(0)<0根据连续函数的介值定理,必有一x属于[0,+∞),使f(x)=0
综上所述,f(x)在[0,+∞)只有一个零点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询