设A是n阶矩阵,秩r(A)=n-1,若行列式|A|的代数余子式A11!=0 则方程Ax=0的解?
2个回答
展开全部
【答案】k·(A11,A12,……,A1n)'
【简析】显然,|A|=0
∴ A·A*=|A|E=0
∴ A*的每一个列向量都是Ax=0的解向量.
又r(A)=n-1
所以,Ax=0的基础解系中仅有一个解向量
A11≠0
∴ (A11,A12,……,A1n)'不是零向量
∴ (A11,A12,……,A1n)'是Ax=0的基础解系
∴ Ax=0的通解是
x=k·(A11,A12,……,A1n)'
【简析】显然,|A|=0
∴ A·A*=|A|E=0
∴ A*的每一个列向量都是Ax=0的解向量.
又r(A)=n-1
所以,Ax=0的基础解系中仅有一个解向量
A11≠0
∴ (A11,A12,……,A1n)'不是零向量
∴ (A11,A12,……,A1n)'是Ax=0的基础解系
∴ Ax=0的通解是
x=k·(A11,A12,……,A1n)'
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询