设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数

怎么解... 怎么解 展开
xunushan
2013-02-25
知道答主
回答量:28
采纳率:0%
帮助的人:20.5万
展开全部
对f(x)/x求导,只要证明分子大于0,即f'(x)>f(x)/x,这可利用拉格朗日中值定理,f(x)/x=f'(t),t属于(0,x),由于f''(x)>0,从而一阶导数单调递增,故f'(x)>f'(t)=f(x)/x
追问
我用求二阶导方法做出来了,用拉格朗是中值定理能再详细点吗
追答

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式