2个回答
展开全部
I = ∫1/(1+x^3) dx = ∫A/(1+x) + (Bx+C)/(1-x+x^2) dx
A = 1/3; B = -1/3; C = 2/3
I = (1/3){∫1/(1+x) + (1/2)(-2x+1 +3)/(1-x+x^2) dx}
= (1/3)ln|1+x| - (1/6) ln|1-x-x^2| + (1/2)∫1/[(x-1/2)^2 + 3/4] dx
= (1/3)ln|1+x| - (1/6) ln|1-x-x^2| + (1/√3)arctan[(2x-1)/√3] + C
A = 1/3; B = -1/3; C = 2/3
I = (1/3){∫1/(1+x) + (1/2)(-2x+1 +3)/(1-x+x^2) dx}
= (1/3)ln|1+x| - (1/6) ln|1-x-x^2| + (1/2)∫1/[(x-1/2)^2 + 3/4] dx
= (1/3)ln|1+x| - (1/6) ln|1-x-x^2| + (1/√3)arctan[(2x-1)/√3] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询