如图,P是正三角形ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60度得到线段AP1,连结P1C
2个回答
展开全部
解答 :
可以将三角形 绕顶点 A逆时针选 60度,使得AB与AC边重合,
p点相应 点为P',则可看到
得到三角形pP'C;
pP'=3;(可以知道角pAP'为等边三角形)
P'C=pB=4;
pC =5;
即可知 pP'与P'C垂直;
即角ApB =角AP'C= 90+60 =150度。
三角形APB与三角形APC的面积之和=
三角形APp1与三角形p1PC的面积之和=√3/4*9+6==9√3/4+6
(2)
在三角形ApB中 ,利用余弦定理 可得到
AB^2=25+12√3
即三角形ABC的面积
S=√3/4*AB^2=9+25√3/4;
三角形BPC的面积=9+25√3/4-(9√3/4+6)=3+4√3
可以将三角形 绕顶点 A逆时针选 60度,使得AB与AC边重合,
p点相应 点为P',则可看到
得到三角形pP'C;
pP'=3;(可以知道角pAP'为等边三角形)
P'C=pB=4;
pC =5;
即可知 pP'与P'C垂直;
即角ApB =角AP'C= 90+60 =150度。
三角形APB与三角形APC的面积之和=
三角形APp1与三角形p1PC的面积之和=√3/4*9+6==9√3/4+6
(2)
在三角形ApB中 ,利用余弦定理 可得到
AB^2=25+12√3
即三角形ABC的面积
S=√3/4*AB^2=9+25√3/4;
三角形BPC的面积=9+25√3/4-(9√3/4+6)=3+4√3
更多追问追答
追问
您可以说得详细一点吗
追答
边长为a的等边三角形面积=√3/4*a^2
展开全部
1、连接PP1 得到三角形APP1因为AP=AP1=3 角PAP1=60°(旋转所得)所以APP1为正三角形,边长3
AP=AP1 AB=AC 角BAP=角CAP1=60°-角PAC 所以三角形ABP与三角形ACP1全等
所以P1C=PB=4
三角形PP1C三边为3 4 5 因为3²+4²=5² 所以三角形PP1C为直角三角形
所以三角形APB+三角形APC=三角形APC+三角形AP1C=三角形APP1+三角形PP1C=1/2*3*3*sin60°+1/2*3*4= 9√3 /4+6
AP=AP1 AB=AC 角BAP=角CAP1=60°-角PAC 所以三角形ABP与三角形ACP1全等
所以P1C=PB=4
三角形PP1C三边为3 4 5 因为3²+4²=5² 所以三角形PP1C为直角三角形
所以三角形APB+三角形APC=三角形APC+三角形AP1C=三角形APP1+三角形PP1C=1/2*3*3*sin60°+1/2*3*4= 9√3 /4+6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询