f(x)=x(e^x-1)-ax^2,a∈R,其中e为自然对数的底数。 (II)若当x≥0时,f(x)≥0恒成立,求实数a的取值范围

速度详细解... 速度详细解 展开
stefanie900
2013-02-25 · TA获得超过1496个赞
知道小有建树答主
回答量:998
采纳率:0%
帮助的人:1480万
展开全部
f(x)≧0

即:x(e^x-1)-ax²≧0
因为x≧0,所以,两边约去一个x得:
e^x-1-ax≧0
ax≦e^x-1
x=0时,0≦0,得:a∈R;
x>0时,a≦(e^x-1)/x
令g(x)=(e^x-1)/x,x>0
g'(x)=(xe^x-e^x+1)/x²=[(x-1)e^x+1]/x²
令h(x)=(x-1)e^x+1,x>0
h'(x)=e^x+(x-1)e^x=xe^x>0
所以,h(x)=(x-1)e^x+1在(0,+∞)上递增,
则:h(x)>h(0)=0
所以,g'(x)=h(x)/x²>0
所以,g(x)=(e^x-1)/x在(0,+∞)上递增,
则:g(x)>g(0),
lim(x→0)(e^x-1)/x=1
所以,g(x)>g(0)=1
所以,a≦1

数学爱好者团队为您解答,如果不懂,请追问~~祝学习进步!
xszttdsg
2013-02-25 · 超过28用户采纳过TA的回答
知道答主
回答量:67
采纳率:0%
帮助的人:70.9万
展开全部
x(e^x-1)-ax^2>=0, ax^2<=x(e^x-1) ,当x>0时 a<=(e^x-1)/x 恒成立 即a<=[(e^x-1)/x]min
令g(x)=(e^x-1)/x (x>0) g'(x)=[xe^x-(e^x-1)]/x^2=[xe^x-e^x+1]/x^2 令 h(x)=xe^x-e^x+1 ,h'(x)=xe^x
显然,当x>0时 h‘(x)>0,且h(x) 在x=0处连续,从而

当x>0时 h(x)>h(0)=0, 从而

当x>0时 g'(x)>0 从而 当x>0时,g(x)>lim(x-->0)g(x)=lim(x-->0)(e^x-1)/x =1
故a<=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式