展开全部
解:换元法!
令t=x∧2/3,则x=t∧3/2,dx=3/2t∧1/2
所以原式=∫[(t∧3/2)*3/2t∧1/2]dt/(t-5)∧2=3/2∫t∧2dt/(t-5)∧2
=3/2∫(t-5+5)∧2dt/(t-5)∧2
=3/2∫[1+10/(t-5)+25/(t-5)∧2]dt
=3/2∫dt+3/2∫10/(t-5)dt+3/2∫25/(t-5)∧2dt
=3/2t+15ln|t-5|-75/(2t-10)+C
如果有疑问,欢迎追问!
令t=x∧2/3,则x=t∧3/2,dx=3/2t∧1/2
所以原式=∫[(t∧3/2)*3/2t∧1/2]dt/(t-5)∧2=3/2∫t∧2dt/(t-5)∧2
=3/2∫(t-5+5)∧2dt/(t-5)∧2
=3/2∫[1+10/(t-5)+25/(t-5)∧2]dt
=3/2∫dt+3/2∫10/(t-5)dt+3/2∫25/(t-5)∧2dt
=3/2t+15ln|t-5|-75/(2t-10)+C
如果有疑问,欢迎追问!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询