无穷小乘以无穷大等于多少?

 我来答
暴走爱生活55
高能答主

2021-10-08 · 我是生活小达人,乐于助人就是我
暴走爱生活55
采纳数:4157 获赞数:1692719

向TA提问 私信TA
展开全部

无穷小+无穷大仍是无穷大,无穷小乘以无穷大没有意义。

正无穷大+正无穷大 = 正无穷大;负无穷大+负无穷大 = 负无穷大;正无穷大+负无穷大 没有意义(出现的话要转换成有意义的形态才能求极限);无穷大乘以无穷大仍然是无穷大;无穷小乘以无穷小仍然是无穷小;无穷大和无穷小不是有限的常量,不能完全遵守常量的运算法则。

无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

相关如下:

无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢。因此两个无穷小量之间又分为高阶无穷小 ,低阶无穷小,同阶无穷小,等价无穷小。

自然数集是具有最小基数的无穷集,它的基数用希伯来字母阿列夫右下角标来表示。

可以证明,任何一个集合的幂集(所有子集所形成的集合)的比原集合大,如果原来的基数是a,则幂集的基数(2的a次方)。对于两个无穷集合,可以以能否建立它们之间的双射,作为比较其大小的标准。

在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
清风聊生活
高粉答主

2021-10-06 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3066
采纳率:100%
帮助的人:49.5万
展开全部

无穷小+无穷大仍是无穷大,无穷小乘以无穷大没有意义。

正无穷大+正无穷大 = 正无穷大;负无穷大+负无穷大 = 负无穷大;正无穷大+负无穷大 没有意义(出现的话要转换成有意义的形态才能求极限);无穷大乘以无穷大仍然是无穷大;无穷小乘以无穷小仍然是无穷小;无穷大和无穷小不是有限的常量,不能完全遵守常量的运算法则。

无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

相关如下:

无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢。因此两个无穷小量之间又分为高阶无穷小 ,低阶无穷小,同阶无穷小,等价无穷小。

自然数集是具有最小基数的无穷集,它的基数用希伯来字母阿列夫右下角标来表示。

可以证明,任何一个集合的幂集(所有子集所形成的集合)的比原集合大,如果原来的基数是a,则幂集的基数(2的a次方)。对于两个无穷集合,可以以能否建立它们之间的双射,作为比较其大小的标准。

在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
顺眼还灵巧的小饼干J
2023-07-26 · TA获得超过270个赞
知道小有建树答主
回答量:2316
采纳率:100%
帮助的人:94万
展开全部
在数学中,无穷小乘以无穷大的结果是不确定的,因为这涉及到一个未定形式(indeterminate form)的情况。无穷小和无穷大都是极限的概念,在特定情况下,它们的乘积可能趋向于任意实数,正无穷大或负无穷大,或者甚至没有有限的极限。
在解决这种未定形式时,需要使用极限运算或其他数学方法。具体的情况取决于问题的背景和具体的函数形式。对于某些函数,无穷小乘以无穷大可能会出现在极限运算、微积分或数学分析中,解决这样的问题需要更多的数学工具和技巧。
总之,无穷小乘以无穷大的结果是不确定的,需要具体问题具体分析,并使用适当的数学方法来求解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式