
√3sin(100πt+π/3)+sin(100πt-π/6)化简
1个回答
展开全部
因为 100πt+π/3= π/2+ (100πt-π/6)
所以 sin(100πt+π/3)=sin[π/2 +(100πt -π/6)]=cos(100πt- π/6)
所以
原式=√3cos(100πt-π/6)+sin(100πt-π/6)
=2[(√3/2)·cos(100πt-π/6)+(1/2)·sin(100πt-π/6)]
=2sin(100πt-π/6+π/3)
=2sin(100πt+π/6)
所以 sin(100πt+π/3)=sin[π/2 +(100πt -π/6)]=cos(100πt- π/6)
所以
原式=√3cos(100πt-π/6)+sin(100πt-π/6)
=2[(√3/2)·cos(100πt-π/6)+(1/2)·sin(100πt-π/6)]
=2sin(100πt-π/6+π/3)
=2sin(100πt+π/6)
更多追问追答
追问
为什么100πt+π/3= π/2+ (100πt-π/6)
追答
因为 π/3= π/2- π/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询