幂函数的奇偶性是什么?
展开全部
要考虑奇偶性,首先要保证函数的定义域是关于原点对称的设指数α=±n/m(n/m是最简分数),一共三种情形:若m是奇数,n是偶数时,定义域是(-∞,+∞)或(-∞0)∪(0,+∞),此时幂函数x^α是偶函数;若m和n都是奇数,定义域是(-∞,+∞)或(-∞0)∪(0,+∞),幂函数x^α是奇函数;若m是偶数,n是奇数,则定义域是[0,+∞)或(0,+∞),幂函数x^α没有奇偶性。
奇偶性是函数的一种性质。奇偶性是一个重要的数学概念,具有奇偶性的函数一般为奇函数或者偶函数。
一般地,如果对于函数f(x)的 定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫 偶函数。
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫 奇函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询