一道数学立体几何题(比较难),高手进

在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=根号3,BD=CD=1,另一个侧面是正三角形。在直线AC上是否存在一点E,使ED与面... 在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=根号3,BD=CD=1,另一个侧面是正三角形。在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由 如果不补成一个长方体的话可以怎么建立空间坐标系?设向量AE=m向量AC 展开
pichu89
2013-02-26 · TA获得超过420个赞
知道小有建树答主
回答量:209
采纳率:100%
帮助的人:225万
展开全部
图有点怪怪的..
这题可以用解析方法做吗?

用勾股定理可马上可算出各边的长度
AB = AC = BC = √2
BD = DC = 1
AD = √3

观察三角形BCD发现它的边是1,1,√2, 是等腰直角三角形.
所以我们不妨假设:
D = (0,0,0)
C = (0,1,0)
B = (1,0,0)
A = (x,y,z)

由AB,AC,AD距离公式可解得 A = (1,1,1)
设 AC 上一点 E = (k,1,k), k 取值 [0,1]
设 F是E在面BCD上的投影, 则 F = (k,1,0)

要 ED与面BCD成30°角
即 角EDF = 30°角
即 EF/DE = 1/2
k / √(2k² + 1) = 1/2
解得 k = √2 / 2

所以E = (√2 / 2,1,√2 / 2)
取 CE = 1 即可
丰紫夏侯05v
2013-02-27
知道答主
回答量:10
采纳率:0%
帮助的人:3.9万
展开全部
存在。。。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式