距高考只有100天了,怎么样提高数学成绩?
展开全部
科学备考,走进阳光灿烂的六月
——写给即将进入考场的高三学子
每年临近高考前几十天,全国至少有200万考生处于终日手忙脚乱,脑海一桶乱麻的状况。如果在你走进考场之前没有摆脱这种处境,那么,你的季节将会下雪。
本文愿同你坦诚交流,共商良策,寻找应对高考的必胜之道,助你走进阳光灿烂的六月,胜利辉煌的六月!
大家知道,高考是“国考”,是严肃认真的国家行为,必然依纲据本考基础,考能力,考心理素质,具有相当的稳定性和严谨的科学性。同时,我们经过十多年的认真学习,尤其是经过六年的中学学习,又特别是经过一轮复习,身经百战,早已经知识多多,经验丰富,实力雄厚。完全可以说,到目前为止,我们中的大部分同学已经把水烧到了九十九度。当然,行百里,半九十,就是这离沸腾的一度,使我们焦虑惶恐不自信,吃不香睡不甜,但只要我们科学备考,沉着应对,巩固双基,弥补漏洞,提升思维能力,强化心理素质,是完全能够胸有成竹地走进考场并考出理想的成绩的,奇迹总是发生在最后的时刻。
特别提醒的是,结束第一轮复习以后,抓双基仍然是你的重中之重。
下面,本文以“八化”为线索,为你铺开一张决胜高考的胜利之网。
一、概念清晰化。
基本概念,尤其是定义,是一切知识的生长点,必须清清楚楚,毫不含糊。我们不但要知道事情是什么,还要知道事情不是什么,要从正反两个方面去认识事物。例如——
问题01、y2=4x是函数吗?
问题02、y=4x2(x≥0)是偶函数吗?
问题03、若x0满足f'(x0)=0,则f(x0)是极值吗?
问题04、满足︱x-1 ︳+︱x+1 ︳=2的动点M(x,y)轨迹是椭圆吗?
问题05、㏒a(M+N)=㏒aM·㏒aN吗?
问题06、直线y=tanθ x的倾斜角是θ吗?
问题07、截距就是距离吗?
问题08、你知道双曲线的虚半轴b有哪两个几何意义吗?
问题09、两个半平面的法向量的夹角大小就是二面角的大小吗?
问题10、你知道球面距离是怎样定义的吗?
问题11、(a·b)·c=a·(b·c)对吗?a>b对吗?a - a=0对吗?
问题12、你知道a·b=| a |·|b|cosθ的几何意义吗?物理意义呢?
……
二、知识网络化。
知识,是构建能力大厦的建筑材料,但是建筑材料的胡乱堆砌决不等于大厦,让大量杂乱无章的知识信息充塞在你的大脑,只会成为沉重的负担,甚至让你的思维“死机”。俄罗斯有一位科学家就曾说过:智慧不是别的,就是知识的组织有序。这说明,花时间梳理已经学过的知识,使之系统化、网络化,是我们备考工作中的一项非常重要的任务。我们宁肯少做一些题目,也要花足够的时间来做好这项工作,因为,清晰的头脑比什么都重要。
怎样来做好这项工作呢?
第一,学会读目录,构建知识菜单。首先通读高中数学教材的全部目录,从大的方面看看都学了哪些方面的知识;其次读每一章节的目录,看看这一部分学习了哪些方面的知识;再次按章节顺序浏览各章节中的内容,看有哪些概念、公式、定理、法则,边看边动笔记录。每一章后的小结也要看,而且要把平时的所学所悟充实进去。很多知识要框架化、表格化、程序化、菜单化或者口诀化。这是一个由宏观到微观的过程,总之要达到多全部所学了然于胸的程度,以使自己具备一种宏观的眼光。
第二,学会找联系,构建知识模块。据说一个优秀的工程师的脑海里有数万个大大小小的知识模块,使得他解决起问题来得心应手。我们学习数学,就应该使自己的知识模块化。比如三角函数这个内容,总的来讲,分为三大板块:预备知识板块,函数板块,解三角形板块。从任意角三角函数的定义式出发,推导出同角三角函数的基本关系,又推导出5组诱导公式,再结合两点的距离公式,推导出两角和与差的公式,进一步推导出二倍角的公式,最后推导出半角公式,这基本上是一个从一般到特殊的过程,这是第一大板块;三角函数的图象和性质,就是用高一函数理论(主要是“三性二域”)来研究三角函数的图象和性质,这里面周期性和奇偶性是借助三角函数这个典型标本新学的函数概念。其实从解析几何知识你知道,所谓奇偶性也不过是对称性的特殊情形。这是第二大板块,严格来讲,这才是真正意义上的三角函数;第三大板块就是正弦、余弦定理。你能够不看课本,用30分钟在一张大白纸上顺利完成这个工作吗?
又比如平均值不等式这个内容,与它相关的公式非常之多,应用也很广,孤立地去记忆它们,不光费时费力,而且容易出错,更遑论灵活运用了。但是如果你花一点时间去推导一遍,你会发现非常有趣,我建议你这样去推导它们:
∵ a·a=a2≥0,以a -b代替a,
∴ (a -b)2≥0,
∴ a2+b2≥2ab,以a、b分别代替a2、b2
有 a+b≥2 (a,b>0)
∴ ≥ ,
或者ab≤ ;
同样由a2+b2≥2ab两边都加上a2+b2,就得
2 (a2+b2)≥(a+b)2,
∴︱a+b︱≤ ;
当a,b>0时还可以得到
≥2, a + ≥ 2b,b + ≥ 2a,…
以及不等式串: ≤ ≤ ≤ 。
再比如解析几何这个内容,无非就是用代数工具研究了5条几何曲线(直线、圆、椭圆、双曲线、抛物线)的定义和性质,并借此告诉你如何根据条件写出方程以及运用坐标法研究曲线的性质,而已。这个内容请读者自己去推演。
三、技能熟练化。
熟练的技能是高效率地完成任何事情的前提。如果你的运算过程磕磕碰碰,则你的解题效率和解题质量就会大打折扣。以下列问题为例,请你考考自己:
问题01、你对利用韦氏图或者利用数轴解决有关集合问题是否熟练准确?
问题02、你对把二次函数y=ax2+bx+c配凑成“顶点式”y=a(x-h)2+k或者配凑成“零点式”y=a(x-x1)(x-x2)(如果存在的话)是否熟练准确?
问题03、你解不等式熟练准确吗?
问题04、你用“五点法”作函数y=Asin(ωx+φ)+k的图象熟练准确吗?
问题05、你对三角函数中经常运用的“拆角凑角法”熟练掌握了吗?
问题06、你对数列中经常出现的由递推公式求通项公式的技能熟练了吗?常见的求和方法都熟练了吗?
问题07、你对立体几何中常见的用几何法和向量法求角(三种)、求距离(八种)的技能都熟练了吗?
问题08、对求二项式指定项系数,你能够不用展开通项公式而做到快捷准确地得到结果吗?
问题09、你能够熟练准确地求反函数吗?
问题10、用数学归纳法证明不等式的技能熟练吗?
问题11、在解决有关直线与圆锥曲线的位置关系的问题时,你对于其中的一系列变形步骤,尤其是整体变形、整体代换的技术熟练掌握了吗?
问题12、你对于解决常见的排列组合问题的方法(约10种)都熟练掌握了吗?
问题13、利用导数求最值和单调区间的技能熟练准确吗?
问题14、有关概率问题、期望方差问题的一般解决步骤都熟练掌握了吗?
……
四、题型模式化。
所谓题型模式化,就是把经典问题的一般解题程序和作法(通性通法)加以熟悉和总结,相对固定,以利运用。这样以后,你在碰到一道题目时,就会有似曾相识的亲切感,解决起来当然就顺利多了。关于这一点,与上文“技能熟悉化”联系紧密,但前者着眼于局部的技能技术,后者着眼于问题全局,前者是磨刀,后者是砍柴。本文建议你认真收集一定数量的经典问题,分型别类,反复揣摩,其善莫大焉!
五、思维正常化。
做人做事,最难之事莫过于正常,因为,正常本来就不是简单的境界。比如飞机的飞行,无须格外超常发挥,能够正常即是天大的福气,如果你不信,你去历险一次就懂了;比如健康,正常的健康体质是无数人追求的最高目标,如果你不信,你去问问那些大病过一场的人或者身体有残疾的人,就懂了。
解决任何问题,都离不开正常的策略。策略对则迎刃而解,策略错则寸步难行。大抵说来,有三点务必高度注意——
一是要养成自觉运用数学思想解决问题的习惯,这实在是最大的策略。高考要考的数学思想,除了明确规定的函数方程思想、等价转化思想、分类讨论思想和数形结合思想以外,还有整体解决思想、消元思想、逆向思维思想、辨证思维思想等也都比较重要。在平时的教学中,每一个数学老师都反复强调了要用数学思想指导解题,遗憾的是,相当一部分考生对于“数学思想”一词并没有多少感觉,似懂非懂,也许是这样的理论过于抽象与深刻,也许是考生们处在这样的年龄对于所谓“思想”总是有些天然的抵触,总之是“不感冒”,倒是对于某些解题技巧比较有兴致。其实,思想是对经验的提炼,思想是下雨的云,有思想才有思路,具有正确思想的人才会大气,才会立于不败之地。毛泽东能够打败比他强大得多的蒋介石,除了毛泽东顺应了历史潮流这一主要因素外,还因为毛泽东引进马列主义的思想比蒋介石引进美式装备更为高明:我有先进的思想,你的先进武器就都是我的了——不知你以为然否?总之,不用数学思想解题,就一定会限于碰运气的境地,就会走弯路甚至无路可走。
下面列举数例,问题都不难,意在抛砖引玉——
问题1、已知扇形的周长是4,扇形的最大面积是多少?
问题2、︱x+1︱+︱x–2︱≥2a+1对x∈R都成立,求a的取值范围。
问题3、在△ABC中,sinA:sinB:sinC=5:7:8则∠B的大小是 (06高考北京卷,12)
问题4、不等式(x-1)(x-a)≥0的解集是什么?
上述问题1、2、3、4分别对应考查函数思想、数形结合思想、等价转化思想和分类讨论四大思想。
虽然备战高考的时间总是显得不够用,但是希望考生还是要重视这个问题,尽量使自己成熟起来。第一是在听课的时候要注意思考老师运用了哪些思想解决问题,自己还可以去花点时间去看一看第一轮资料中的关于数学思想的专题;第二是自己在解题时要自觉地运用数学思想指导解题,强化“思想意识”。
二是要分别解小题的思维策略与解大题的思维策略。为了达到全面考查考生的知识、能力、素质以及可持续发展的空间,高考试卷设置了大约占一半分数的小题(选择题和填空题),其中的大部分小题可以而且应该用间接手段(如数形结合、特值代验、逻辑排除、反例排除、趋势判断、直觉判断、估计判断、退化判断、现场操作、极端思考、等价转化、巧用定义,等等)迅速获得正确答案,从而为解答全卷赢得宝贵的时间。然而,有相当一部分考生对于用间接手段解题并不放心,甚至思想不解放,认为这样做“不道德”,而不明白这其实正是高考命题者的真实意图所在。
实例01、y=2sin(2x+ )- 3cos(2x+ )的周期是 (高考题改编)
实例02、点P(2cos10°,2sin10°),Q(2cos70°,2sin70°),PQ=?
实例03、ax2+2x+1=0至少有一个负的实根的充要条件是( )
A、0﹤a≤1。B、a﹤1。C、a≤1。D、0﹤a≤1或a﹤0。(课本一册上P.43)
实例04、用长度分别为2、3、4、5、6(单位:cm)的5根细木棍围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为多少?
A、8 cm2 B、6 cm2 C、3 cm2 D、20 cm2(06年全国卷Ⅰ,11)
实例05、在(x4+1/x)10的展开式中常数项是 (06年全国卷Ⅱ,13)
实例06、函数f(x)= ︱x-n︱的最小值为( )
A、190 B、171 C、90 D、45 (06年全国卷Ⅱ,12)
妙解如下:
实例01:如果先展开后化简,将耗费大量时间;如果能直接领悟到化简以后必定变成y=Asin(2x+φ)的形式,则瞬间知道答案为 。(直觉判断)
实例02:如果代入两点的距离公式,固然也行;如果能够意识到问题的几何意义:P、Q都是以原点为圆心,半径为2的圆周上的两个点,且∠POQ=60°,则立马知道答案为2。(数形结合)
实例03:此题如果用直接法求解,花10分钟也未必解决得了。如果由选项看出,0和1是两个关键数字,以0代入,得x=- 符合要求,排除A、D;再以1代入,得x=-1符合要求,所以选C。(特值代验)
实例04:对于绝大部分考生来说,这是一道难度较大的选择题,因为你去安排各边的长度时,组合的可能有许多,因此命题者用此题“把关”。其实由题设知道,这个三角形的周长是定值20,周长是定值的三角形在高或底趋向于零时其形状趋向于一条直线,其面积趋向于零,由此可知,只有当三角形的形状趋向于最“饱满”时候面积最大,也就是说,形状接近于正三角形时面积最大,故三边长应该为7、7、6,因此易知最大面积为6√10 cm2,选B。(趋势判断)
实例05:要得到指定项,通常利用通项公式Tr+1先求出r,这样做当然未可厚非。不过如果意识到,展开项反正是由x4与 两者共同“瓜分”次数10而决定结果的话,立即知道应该x4分得2, 分得8,即r=2时得到常数项,于是常数项为C102=45。(直觉判断)
实例06:这也是一道“把关”题,相信很多考生选择了放弃思考而乱猜一个的办法。用直接法做绝对不是一件容易的事,这其实也就逼迫你必须用间接法来做。这里n是已知量,试想如果退化一下,取n=3,你就很有可能意识到f(x)=︱x–1︱+︱x–2︱+︱x–3︱只有当x=2时f(x)取得最小值2,这个2是1、2、3的平均值(中间数),它会使得各项之和最小,因此知道n=19时,x应该取10,于是得结果为2(9+8+7+6+5+4+3+2+1)=90,选C,这是一种退化判断的策略。如果直觉比较好,也应该能够意识到x应该取一个特殊值时f(x)才会最小,这个特殊值就是中间值10;另外你用数形结合的办法也不错:f(x)表示数轴上的动点x到定点1、2、3、…、19的距离之和,由几何意义知x=10时f(x)取得最小值;你甚至还可以联想到“方差”, “方差”其实是一种偏差的积累,把f(x)看作方差, 方差小则随机变量稳定,不过现在既然随机变量先已确定,则x应该取它们的平均值10(类比判断)。
关于如何捷解小题,请另外详细参见有关专题论述。
解答小题有上述策略,而解答大题(解答题)有些何策略呢?请看下列五点简述——
第一:审题优先,识别模式。考场如同战场,解题如同打仗,只有知己知彼,方能克敌制胜。审题就是一个侦察“敌情”了解题情的过程,是取胜的前提,务必高度重视。阅读题目要做到“逐字、逐句、逐标点”,理解题目要坚持“边读、边画、边联想”,把握题目要分清已知、未知、隐含知,最后达到“抓住关键词,题在胸中装”的境地。
第二:逆向思考,目标引路。你玩过走“迷宫”的游戏吗?如果你真正从“入口”进入朝“出口”走,则歧路丛生,久不得出;反之你从“出口”入向“入口”走,则如顺流而下一举贯通,这就是一种典型的逆向思考的方法。目标引路实际是一种逆向思考,即从要达到的目标出发,步步回溯,直到找到题目提供的条件。对于那种一眼看不透的题目,你都要这样去思考。
第三:差异分析,双向沟通。这一条,是对上一条的补充。有些题目,条件与目标差异较大,只运用逆向思考可能难以一举贯通,就需要条件目标双向变,并不断比较它们的差异,有意识地缩小它们之间的差异,最终实现贯通。就象两支施工对同时开挖同一条隧道一样,彼此都以对方为目标相向前进。
第四:抽象问题,遵循规则。抽象型问题也可以叫做规则型问题,有抽象函数问题,抽象不等式问题,抽象数列问题等等,近年来出现的所谓“新定义题”,本质上也是一种规则型题目。出题形式则大、小题都可能,这类问题往往令人心烦意躁,严重影响考试情绪。为什么会出现这种现象呢?因为抽象型问题的背景是不具体的,似乎使我们不好操作。其实,抽象型问题都是可爱的纸老虎!因为,抽象型问题有一个最大的优点是:规则是具体的。你只要正确运用所给的规则进行推演或者赋值,或者找出一个符合规则的具体问题进行探索,就不难得到你要的一切。
第五:重点专题,各个击破。这是一篇大文章,“内容专题化”原本就是知识系统化模块化的体现。可以说,高中数学的每一个内容,都有一个专题,同学们在第一第二轮复习中已经对此花费了大量心血,而对于重点专题,则要求重点突破。例如——
专题1、已知数列的递推公式,如何求其通项公式?
专题2、已知数列的递推公式或者通项公式,如何求其前n项的和?
专题3、解析几何中,与离心率有关的问题,以及焦点三角形问题。
专题4、解析几何中,直线与圆锥曲线的关系问题。
专题5、立体几何中,与组合体有关的问题。
专题6、恒成立问题专题。
专题7、导数的应用专题。
专题8、函数中的推理问题专题。
专题9、含参数不等式问题。
专题10、排列组合快速准确求解专题。
……
例如:函数f(x)对于任意实数x满足条件f(x+2)= , 若f(1)=–5,则f(f(5))= (06高考安徽卷,15)
解析:依题意,f(x+2)= = f(x–2),所以f(x)是周期函数,且周期为4。∴f(5)=f(1)=–5,又令x=1,则f(3)= =-
∴f(f(5))= f(–5)= f(–5+8)= f(3)=- 。
六、盲点清空化。
兵法云,凡用兵,先为不可胜,而待敌之可胜。又说,知己知彼,百战不殆。高考,当然要考查考生概念的严谨性和思维的严密性,因此你必须认真对待此事,否则,高考中漏洞百出,就会出现“会而不对,对而不全”的遗憾。你的盲点有哪些呢?你不妨先参考下列问题——
盲点01:忽略分母≠0,如错以为 ≥0等价于(x-1)(x+1) ≥0;
盲点02:漏解.如已知 sinx= ,则错以为x= +2 k , k∈Z;
盲点03:乱套模型,例如求y=3sin(-x+ )+1的单调递增区间,错误地以-x+ 代入y=sinx的单调递增区间求解;
盲点04:求y=tanx的对称中心,错写成(k ,0),k∈Z;
盲点05:把单调区间用并集符号连接起来;
盲点06:忽略新变量的定义域,如用sinx+cosx=t换元,忘写t∈[- , ];
盲点07:忽略自限制条件,例如: 已知3sin2x+2sin2y-2sinx=0,求cos2x+cos2y的取值范围;
盲点08:忽略隐含条件,例如:若sinθ﹤0,则认为θ在第三、四象限;
盲点09:运用“截距相等”时,忘记考虑截距为0的情形;
盲点10:忘记优先考虑定义域,例如求函数y=lg(x2+2x)的单调区间;
盲点11:求反函数忘记写定义域;
盲点12:利用an= Sn- Sn-1求数列通项公式时,忘记n≥2这个条件 ;
盲点20:忘记考虑区间端点取还是不取?;
盲点13:解决与ax2+bx+c有关的问题,不考虑是否有a=0的可能;
盲点14:等比数列公比是否为1 呢?;
盲点15:利用三角函数值求角,忘记讨论角的范围就下结论;
盲点16:解二次方程根的分布问题,不优先考虑判别式的符号;
盲点17:用向量法求异面直线的夹角,忘记考虑可能求得的是其补角;
盲点18:球面距离概念不清;
盲点19:极值当作最值;
……
希望考生以上述“典型盲点”为例,按照课本内容的顺序,集中搜集你自己的知识盲点、思维盲点和习惯盲点,加以逐一清除。
七、结论丰富化
唱歌,有些人尽管唱很“准确”,却一点儿不动人,为什么?因为他的音色欠美,音色美的人发出的声音,除了为主的那个音以外,伴随在该音周围还有大量的谐音,使其为主的那个音显得饱满生色,就象弯月亮周围有几颗星星才显得更美一样。学习也是如此,在平时的学习中,你一定知道有不少主干知识,但是如果你只有主干知识,那你的知识结构就是干巴巴的。你肯定碰到过大量的小结论,这些小结论虽然比定理公式的地位低,但极大地丰富了原有的定理和公式,非常管用。所以你应该按照课本目录顺序,分别认真收集,集中记忆80个以上。例如——
1、(1±i)2=±2i;
2、1±sinθ=(sin ±cos )2≥0;
3、1+cosθ=2cos2 ,1-cosθ=2sin2 ;
4、奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,…
5、增函数+增函数=增函数,减函数·减函数=增函数,…
6、复合函数的单调性:同增异减;
7、指数函数和对数函数的值域:同大异小;
8、x2±x+1≥ >0;|x|±x≥0;若已知|f(x)|≥ f(x),则f(x)
9、若f(x)是奇函数,并且f(x)在x=0处有意义,则f(0)=0 ;
10、等比数列+等比数列=等比数列,等差数列+等差数列=等差数列, 等差数列+等比数列一般既不是等差数列,也不是等比数列,……
11、△ABC中,sinA:sinB:sinC=a;b:c ;
12、△ABC中,若A、B、C成等差数列,则B=60°;
13、在双曲线 (a,b>0)中,焦点F到渐近线的距离等于b;
14、在抛物线y2=2px(p>0)中,设过焦点F的直线L与抛物线交于点A(x1,y1)、B(x2,y2),A、F、B在准线上的射影分别是 、 、 ,则 ; ; ;│AB│= = ; ;以AB为直径的圆与准线相切,以 为直径的圆与AB切于焦点F; 、O、B三点共线;A、O、 三点共线;过 的切线方程为 ;若此切线交 轴于点T,则FT=FP,……
八、书写规范化
这是一个老生常谈的话题了,本文也谈不出什么新意。举几个例子吧——
1、2、3、
奉劝一句,如果你不是什么天才,如果你不想在高考中白白损失60分乃至更多,那你就从读到这篇文章起,开始好好地写字和学会排版吧.
原因在哪里?让我告诉你一个天大的秘密——就是给高考试卷评分的,都是普通人,而不是外星人。他们都吃饭,喝水,睡觉;他们都爱美(试卷美观);……他们在做重复劳动的时候也喜欢打瞌睡;他们阅卷的的时候,都是“头天紧,二天松,三天就变鼓鼓工(宁乡方言:即估计着打分的意思)”。如果你书写不好,他就让你“吃了暗亏做不得声”,没有人会去追究评卷人的责任——监管他们的领导也是地球人啊,不要指望他们会为你“讨回公道”,按规矩,高考查卷只查是否加错总分,不查是否批改错误,就是这个原因。
所以,高考要胜利,必须过三关:实力关,书写关,填志愿关。而书写就是最重要的一关啊。
以上“八化”,洋洋洒洒,貌似详尽,实则挂一漏万.例如,应试得分策略问题,应试心理问题,又例如“题型模式化”问题,就因为受篇幅限制,不可能详细论述,因此写得简单,但读者应该知道它的极端重要性.又,各人情况千差万别,对策也就因人而异,各有侧重.总之,运用之妙,存乎一心,愿你好运!
附注:这份资料,不要外传,但你可以珍藏起来,留给你的后代将来参考。
2012年3月1日修订
作者 黎国之 自助式立体几何万能学具发明人与开发者
——写给即将进入考场的高三学子
每年临近高考前几十天,全国至少有200万考生处于终日手忙脚乱,脑海一桶乱麻的状况。如果在你走进考场之前没有摆脱这种处境,那么,你的季节将会下雪。
本文愿同你坦诚交流,共商良策,寻找应对高考的必胜之道,助你走进阳光灿烂的六月,胜利辉煌的六月!
大家知道,高考是“国考”,是严肃认真的国家行为,必然依纲据本考基础,考能力,考心理素质,具有相当的稳定性和严谨的科学性。同时,我们经过十多年的认真学习,尤其是经过六年的中学学习,又特别是经过一轮复习,身经百战,早已经知识多多,经验丰富,实力雄厚。完全可以说,到目前为止,我们中的大部分同学已经把水烧到了九十九度。当然,行百里,半九十,就是这离沸腾的一度,使我们焦虑惶恐不自信,吃不香睡不甜,但只要我们科学备考,沉着应对,巩固双基,弥补漏洞,提升思维能力,强化心理素质,是完全能够胸有成竹地走进考场并考出理想的成绩的,奇迹总是发生在最后的时刻。
特别提醒的是,结束第一轮复习以后,抓双基仍然是你的重中之重。
下面,本文以“八化”为线索,为你铺开一张决胜高考的胜利之网。
一、概念清晰化。
基本概念,尤其是定义,是一切知识的生长点,必须清清楚楚,毫不含糊。我们不但要知道事情是什么,还要知道事情不是什么,要从正反两个方面去认识事物。例如——
问题01、y2=4x是函数吗?
问题02、y=4x2(x≥0)是偶函数吗?
问题03、若x0满足f'(x0)=0,则f(x0)是极值吗?
问题04、满足︱x-1 ︳+︱x+1 ︳=2的动点M(x,y)轨迹是椭圆吗?
问题05、㏒a(M+N)=㏒aM·㏒aN吗?
问题06、直线y=tanθ x的倾斜角是θ吗?
问题07、截距就是距离吗?
问题08、你知道双曲线的虚半轴b有哪两个几何意义吗?
问题09、两个半平面的法向量的夹角大小就是二面角的大小吗?
问题10、你知道球面距离是怎样定义的吗?
问题11、(a·b)·c=a·(b·c)对吗?a>b对吗?a - a=0对吗?
问题12、你知道a·b=| a |·|b|cosθ的几何意义吗?物理意义呢?
……
二、知识网络化。
知识,是构建能力大厦的建筑材料,但是建筑材料的胡乱堆砌决不等于大厦,让大量杂乱无章的知识信息充塞在你的大脑,只会成为沉重的负担,甚至让你的思维“死机”。俄罗斯有一位科学家就曾说过:智慧不是别的,就是知识的组织有序。这说明,花时间梳理已经学过的知识,使之系统化、网络化,是我们备考工作中的一项非常重要的任务。我们宁肯少做一些题目,也要花足够的时间来做好这项工作,因为,清晰的头脑比什么都重要。
怎样来做好这项工作呢?
第一,学会读目录,构建知识菜单。首先通读高中数学教材的全部目录,从大的方面看看都学了哪些方面的知识;其次读每一章节的目录,看看这一部分学习了哪些方面的知识;再次按章节顺序浏览各章节中的内容,看有哪些概念、公式、定理、法则,边看边动笔记录。每一章后的小结也要看,而且要把平时的所学所悟充实进去。很多知识要框架化、表格化、程序化、菜单化或者口诀化。这是一个由宏观到微观的过程,总之要达到多全部所学了然于胸的程度,以使自己具备一种宏观的眼光。
第二,学会找联系,构建知识模块。据说一个优秀的工程师的脑海里有数万个大大小小的知识模块,使得他解决起问题来得心应手。我们学习数学,就应该使自己的知识模块化。比如三角函数这个内容,总的来讲,分为三大板块:预备知识板块,函数板块,解三角形板块。从任意角三角函数的定义式出发,推导出同角三角函数的基本关系,又推导出5组诱导公式,再结合两点的距离公式,推导出两角和与差的公式,进一步推导出二倍角的公式,最后推导出半角公式,这基本上是一个从一般到特殊的过程,这是第一大板块;三角函数的图象和性质,就是用高一函数理论(主要是“三性二域”)来研究三角函数的图象和性质,这里面周期性和奇偶性是借助三角函数这个典型标本新学的函数概念。其实从解析几何知识你知道,所谓奇偶性也不过是对称性的特殊情形。这是第二大板块,严格来讲,这才是真正意义上的三角函数;第三大板块就是正弦、余弦定理。你能够不看课本,用30分钟在一张大白纸上顺利完成这个工作吗?
又比如平均值不等式这个内容,与它相关的公式非常之多,应用也很广,孤立地去记忆它们,不光费时费力,而且容易出错,更遑论灵活运用了。但是如果你花一点时间去推导一遍,你会发现非常有趣,我建议你这样去推导它们:
∵ a·a=a2≥0,以a -b代替a,
∴ (a -b)2≥0,
∴ a2+b2≥2ab,以a、b分别代替a2、b2
有 a+b≥2 (a,b>0)
∴ ≥ ,
或者ab≤ ;
同样由a2+b2≥2ab两边都加上a2+b2,就得
2 (a2+b2)≥(a+b)2,
∴︱a+b︱≤ ;
当a,b>0时还可以得到
≥2, a + ≥ 2b,b + ≥ 2a,…
以及不等式串: ≤ ≤ ≤ 。
再比如解析几何这个内容,无非就是用代数工具研究了5条几何曲线(直线、圆、椭圆、双曲线、抛物线)的定义和性质,并借此告诉你如何根据条件写出方程以及运用坐标法研究曲线的性质,而已。这个内容请读者自己去推演。
三、技能熟练化。
熟练的技能是高效率地完成任何事情的前提。如果你的运算过程磕磕碰碰,则你的解题效率和解题质量就会大打折扣。以下列问题为例,请你考考自己:
问题01、你对利用韦氏图或者利用数轴解决有关集合问题是否熟练准确?
问题02、你对把二次函数y=ax2+bx+c配凑成“顶点式”y=a(x-h)2+k或者配凑成“零点式”y=a(x-x1)(x-x2)(如果存在的话)是否熟练准确?
问题03、你解不等式熟练准确吗?
问题04、你用“五点法”作函数y=Asin(ωx+φ)+k的图象熟练准确吗?
问题05、你对三角函数中经常运用的“拆角凑角法”熟练掌握了吗?
问题06、你对数列中经常出现的由递推公式求通项公式的技能熟练了吗?常见的求和方法都熟练了吗?
问题07、你对立体几何中常见的用几何法和向量法求角(三种)、求距离(八种)的技能都熟练了吗?
问题08、对求二项式指定项系数,你能够不用展开通项公式而做到快捷准确地得到结果吗?
问题09、你能够熟练准确地求反函数吗?
问题10、用数学归纳法证明不等式的技能熟练吗?
问题11、在解决有关直线与圆锥曲线的位置关系的问题时,你对于其中的一系列变形步骤,尤其是整体变形、整体代换的技术熟练掌握了吗?
问题12、你对于解决常见的排列组合问题的方法(约10种)都熟练掌握了吗?
问题13、利用导数求最值和单调区间的技能熟练准确吗?
问题14、有关概率问题、期望方差问题的一般解决步骤都熟练掌握了吗?
……
四、题型模式化。
所谓题型模式化,就是把经典问题的一般解题程序和作法(通性通法)加以熟悉和总结,相对固定,以利运用。这样以后,你在碰到一道题目时,就会有似曾相识的亲切感,解决起来当然就顺利多了。关于这一点,与上文“技能熟悉化”联系紧密,但前者着眼于局部的技能技术,后者着眼于问题全局,前者是磨刀,后者是砍柴。本文建议你认真收集一定数量的经典问题,分型别类,反复揣摩,其善莫大焉!
五、思维正常化。
做人做事,最难之事莫过于正常,因为,正常本来就不是简单的境界。比如飞机的飞行,无须格外超常发挥,能够正常即是天大的福气,如果你不信,你去历险一次就懂了;比如健康,正常的健康体质是无数人追求的最高目标,如果你不信,你去问问那些大病过一场的人或者身体有残疾的人,就懂了。
解决任何问题,都离不开正常的策略。策略对则迎刃而解,策略错则寸步难行。大抵说来,有三点务必高度注意——
一是要养成自觉运用数学思想解决问题的习惯,这实在是最大的策略。高考要考的数学思想,除了明确规定的函数方程思想、等价转化思想、分类讨论思想和数形结合思想以外,还有整体解决思想、消元思想、逆向思维思想、辨证思维思想等也都比较重要。在平时的教学中,每一个数学老师都反复强调了要用数学思想指导解题,遗憾的是,相当一部分考生对于“数学思想”一词并没有多少感觉,似懂非懂,也许是这样的理论过于抽象与深刻,也许是考生们处在这样的年龄对于所谓“思想”总是有些天然的抵触,总之是“不感冒”,倒是对于某些解题技巧比较有兴致。其实,思想是对经验的提炼,思想是下雨的云,有思想才有思路,具有正确思想的人才会大气,才会立于不败之地。毛泽东能够打败比他强大得多的蒋介石,除了毛泽东顺应了历史潮流这一主要因素外,还因为毛泽东引进马列主义的思想比蒋介石引进美式装备更为高明:我有先进的思想,你的先进武器就都是我的了——不知你以为然否?总之,不用数学思想解题,就一定会限于碰运气的境地,就会走弯路甚至无路可走。
下面列举数例,问题都不难,意在抛砖引玉——
问题1、已知扇形的周长是4,扇形的最大面积是多少?
问题2、︱x+1︱+︱x–2︱≥2a+1对x∈R都成立,求a的取值范围。
问题3、在△ABC中,sinA:sinB:sinC=5:7:8则∠B的大小是 (06高考北京卷,12)
问题4、不等式(x-1)(x-a)≥0的解集是什么?
上述问题1、2、3、4分别对应考查函数思想、数形结合思想、等价转化思想和分类讨论四大思想。
虽然备战高考的时间总是显得不够用,但是希望考生还是要重视这个问题,尽量使自己成熟起来。第一是在听课的时候要注意思考老师运用了哪些思想解决问题,自己还可以去花点时间去看一看第一轮资料中的关于数学思想的专题;第二是自己在解题时要自觉地运用数学思想指导解题,强化“思想意识”。
二是要分别解小题的思维策略与解大题的思维策略。为了达到全面考查考生的知识、能力、素质以及可持续发展的空间,高考试卷设置了大约占一半分数的小题(选择题和填空题),其中的大部分小题可以而且应该用间接手段(如数形结合、特值代验、逻辑排除、反例排除、趋势判断、直觉判断、估计判断、退化判断、现场操作、极端思考、等价转化、巧用定义,等等)迅速获得正确答案,从而为解答全卷赢得宝贵的时间。然而,有相当一部分考生对于用间接手段解题并不放心,甚至思想不解放,认为这样做“不道德”,而不明白这其实正是高考命题者的真实意图所在。
实例01、y=2sin(2x+ )- 3cos(2x+ )的周期是 (高考题改编)
实例02、点P(2cos10°,2sin10°),Q(2cos70°,2sin70°),PQ=?
实例03、ax2+2x+1=0至少有一个负的实根的充要条件是( )
A、0﹤a≤1。B、a﹤1。C、a≤1。D、0﹤a≤1或a﹤0。(课本一册上P.43)
实例04、用长度分别为2、3、4、5、6(单位:cm)的5根细木棍围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为多少?
A、8 cm2 B、6 cm2 C、3 cm2 D、20 cm2(06年全国卷Ⅰ,11)
实例05、在(x4+1/x)10的展开式中常数项是 (06年全国卷Ⅱ,13)
实例06、函数f(x)= ︱x-n︱的最小值为( )
A、190 B、171 C、90 D、45 (06年全国卷Ⅱ,12)
妙解如下:
实例01:如果先展开后化简,将耗费大量时间;如果能直接领悟到化简以后必定变成y=Asin(2x+φ)的形式,则瞬间知道答案为 。(直觉判断)
实例02:如果代入两点的距离公式,固然也行;如果能够意识到问题的几何意义:P、Q都是以原点为圆心,半径为2的圆周上的两个点,且∠POQ=60°,则立马知道答案为2。(数形结合)
实例03:此题如果用直接法求解,花10分钟也未必解决得了。如果由选项看出,0和1是两个关键数字,以0代入,得x=- 符合要求,排除A、D;再以1代入,得x=-1符合要求,所以选C。(特值代验)
实例04:对于绝大部分考生来说,这是一道难度较大的选择题,因为你去安排各边的长度时,组合的可能有许多,因此命题者用此题“把关”。其实由题设知道,这个三角形的周长是定值20,周长是定值的三角形在高或底趋向于零时其形状趋向于一条直线,其面积趋向于零,由此可知,只有当三角形的形状趋向于最“饱满”时候面积最大,也就是说,形状接近于正三角形时面积最大,故三边长应该为7、7、6,因此易知最大面积为6√10 cm2,选B。(趋势判断)
实例05:要得到指定项,通常利用通项公式Tr+1先求出r,这样做当然未可厚非。不过如果意识到,展开项反正是由x4与 两者共同“瓜分”次数10而决定结果的话,立即知道应该x4分得2, 分得8,即r=2时得到常数项,于是常数项为C102=45。(直觉判断)
实例06:这也是一道“把关”题,相信很多考生选择了放弃思考而乱猜一个的办法。用直接法做绝对不是一件容易的事,这其实也就逼迫你必须用间接法来做。这里n是已知量,试想如果退化一下,取n=3,你就很有可能意识到f(x)=︱x–1︱+︱x–2︱+︱x–3︱只有当x=2时f(x)取得最小值2,这个2是1、2、3的平均值(中间数),它会使得各项之和最小,因此知道n=19时,x应该取10,于是得结果为2(9+8+7+6+5+4+3+2+1)=90,选C,这是一种退化判断的策略。如果直觉比较好,也应该能够意识到x应该取一个特殊值时f(x)才会最小,这个特殊值就是中间值10;另外你用数形结合的办法也不错:f(x)表示数轴上的动点x到定点1、2、3、…、19的距离之和,由几何意义知x=10时f(x)取得最小值;你甚至还可以联想到“方差”, “方差”其实是一种偏差的积累,把f(x)看作方差, 方差小则随机变量稳定,不过现在既然随机变量先已确定,则x应该取它们的平均值10(类比判断)。
关于如何捷解小题,请另外详细参见有关专题论述。
解答小题有上述策略,而解答大题(解答题)有些何策略呢?请看下列五点简述——
第一:审题优先,识别模式。考场如同战场,解题如同打仗,只有知己知彼,方能克敌制胜。审题就是一个侦察“敌情”了解题情的过程,是取胜的前提,务必高度重视。阅读题目要做到“逐字、逐句、逐标点”,理解题目要坚持“边读、边画、边联想”,把握题目要分清已知、未知、隐含知,最后达到“抓住关键词,题在胸中装”的境地。
第二:逆向思考,目标引路。你玩过走“迷宫”的游戏吗?如果你真正从“入口”进入朝“出口”走,则歧路丛生,久不得出;反之你从“出口”入向“入口”走,则如顺流而下一举贯通,这就是一种典型的逆向思考的方法。目标引路实际是一种逆向思考,即从要达到的目标出发,步步回溯,直到找到题目提供的条件。对于那种一眼看不透的题目,你都要这样去思考。
第三:差异分析,双向沟通。这一条,是对上一条的补充。有些题目,条件与目标差异较大,只运用逆向思考可能难以一举贯通,就需要条件目标双向变,并不断比较它们的差异,有意识地缩小它们之间的差异,最终实现贯通。就象两支施工对同时开挖同一条隧道一样,彼此都以对方为目标相向前进。
第四:抽象问题,遵循规则。抽象型问题也可以叫做规则型问题,有抽象函数问题,抽象不等式问题,抽象数列问题等等,近年来出现的所谓“新定义题”,本质上也是一种规则型题目。出题形式则大、小题都可能,这类问题往往令人心烦意躁,严重影响考试情绪。为什么会出现这种现象呢?因为抽象型问题的背景是不具体的,似乎使我们不好操作。其实,抽象型问题都是可爱的纸老虎!因为,抽象型问题有一个最大的优点是:规则是具体的。你只要正确运用所给的规则进行推演或者赋值,或者找出一个符合规则的具体问题进行探索,就不难得到你要的一切。
第五:重点专题,各个击破。这是一篇大文章,“内容专题化”原本就是知识系统化模块化的体现。可以说,高中数学的每一个内容,都有一个专题,同学们在第一第二轮复习中已经对此花费了大量心血,而对于重点专题,则要求重点突破。例如——
专题1、已知数列的递推公式,如何求其通项公式?
专题2、已知数列的递推公式或者通项公式,如何求其前n项的和?
专题3、解析几何中,与离心率有关的问题,以及焦点三角形问题。
专题4、解析几何中,直线与圆锥曲线的关系问题。
专题5、立体几何中,与组合体有关的问题。
专题6、恒成立问题专题。
专题7、导数的应用专题。
专题8、函数中的推理问题专题。
专题9、含参数不等式问题。
专题10、排列组合快速准确求解专题。
……
例如:函数f(x)对于任意实数x满足条件f(x+2)= , 若f(1)=–5,则f(f(5))= (06高考安徽卷,15)
解析:依题意,f(x+2)= = f(x–2),所以f(x)是周期函数,且周期为4。∴f(5)=f(1)=–5,又令x=1,则f(3)= =-
∴f(f(5))= f(–5)= f(–5+8)= f(3)=- 。
六、盲点清空化。
兵法云,凡用兵,先为不可胜,而待敌之可胜。又说,知己知彼,百战不殆。高考,当然要考查考生概念的严谨性和思维的严密性,因此你必须认真对待此事,否则,高考中漏洞百出,就会出现“会而不对,对而不全”的遗憾。你的盲点有哪些呢?你不妨先参考下列问题——
盲点01:忽略分母≠0,如错以为 ≥0等价于(x-1)(x+1) ≥0;
盲点02:漏解.如已知 sinx= ,则错以为x= +2 k , k∈Z;
盲点03:乱套模型,例如求y=3sin(-x+ )+1的单调递增区间,错误地以-x+ 代入y=sinx的单调递增区间求解;
盲点04:求y=tanx的对称中心,错写成(k ,0),k∈Z;
盲点05:把单调区间用并集符号连接起来;
盲点06:忽略新变量的定义域,如用sinx+cosx=t换元,忘写t∈[- , ];
盲点07:忽略自限制条件,例如: 已知3sin2x+2sin2y-2sinx=0,求cos2x+cos2y的取值范围;
盲点08:忽略隐含条件,例如:若sinθ﹤0,则认为θ在第三、四象限;
盲点09:运用“截距相等”时,忘记考虑截距为0的情形;
盲点10:忘记优先考虑定义域,例如求函数y=lg(x2+2x)的单调区间;
盲点11:求反函数忘记写定义域;
盲点12:利用an= Sn- Sn-1求数列通项公式时,忘记n≥2这个条件 ;
盲点20:忘记考虑区间端点取还是不取?;
盲点13:解决与ax2+bx+c有关的问题,不考虑是否有a=0的可能;
盲点14:等比数列公比是否为1 呢?;
盲点15:利用三角函数值求角,忘记讨论角的范围就下结论;
盲点16:解二次方程根的分布问题,不优先考虑判别式的符号;
盲点17:用向量法求异面直线的夹角,忘记考虑可能求得的是其补角;
盲点18:球面距离概念不清;
盲点19:极值当作最值;
……
希望考生以上述“典型盲点”为例,按照课本内容的顺序,集中搜集你自己的知识盲点、思维盲点和习惯盲点,加以逐一清除。
七、结论丰富化
唱歌,有些人尽管唱很“准确”,却一点儿不动人,为什么?因为他的音色欠美,音色美的人发出的声音,除了为主的那个音以外,伴随在该音周围还有大量的谐音,使其为主的那个音显得饱满生色,就象弯月亮周围有几颗星星才显得更美一样。学习也是如此,在平时的学习中,你一定知道有不少主干知识,但是如果你只有主干知识,那你的知识结构就是干巴巴的。你肯定碰到过大量的小结论,这些小结论虽然比定理公式的地位低,但极大地丰富了原有的定理和公式,非常管用。所以你应该按照课本目录顺序,分别认真收集,集中记忆80个以上。例如——
1、(1±i)2=±2i;
2、1±sinθ=(sin ±cos )2≥0;
3、1+cosθ=2cos2 ,1-cosθ=2sin2 ;
4、奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,…
5、增函数+增函数=增函数,减函数·减函数=增函数,…
6、复合函数的单调性:同增异减;
7、指数函数和对数函数的值域:同大异小;
8、x2±x+1≥ >0;|x|±x≥0;若已知|f(x)|≥ f(x),则f(x)
9、若f(x)是奇函数,并且f(x)在x=0处有意义,则f(0)=0 ;
10、等比数列+等比数列=等比数列,等差数列+等差数列=等差数列, 等差数列+等比数列一般既不是等差数列,也不是等比数列,……
11、△ABC中,sinA:sinB:sinC=a;b:c ;
12、△ABC中,若A、B、C成等差数列,则B=60°;
13、在双曲线 (a,b>0)中,焦点F到渐近线的距离等于b;
14、在抛物线y2=2px(p>0)中,设过焦点F的直线L与抛物线交于点A(x1,y1)、B(x2,y2),A、F、B在准线上的射影分别是 、 、 ,则 ; ; ;│AB│= = ; ;以AB为直径的圆与准线相切,以 为直径的圆与AB切于焦点F; 、O、B三点共线;A、O、 三点共线;过 的切线方程为 ;若此切线交 轴于点T,则FT=FP,……
八、书写规范化
这是一个老生常谈的话题了,本文也谈不出什么新意。举几个例子吧——
1、2、3、
奉劝一句,如果你不是什么天才,如果你不想在高考中白白损失60分乃至更多,那你就从读到这篇文章起,开始好好地写字和学会排版吧.
原因在哪里?让我告诉你一个天大的秘密——就是给高考试卷评分的,都是普通人,而不是外星人。他们都吃饭,喝水,睡觉;他们都爱美(试卷美观);……他们在做重复劳动的时候也喜欢打瞌睡;他们阅卷的的时候,都是“头天紧,二天松,三天就变鼓鼓工(宁乡方言:即估计着打分的意思)”。如果你书写不好,他就让你“吃了暗亏做不得声”,没有人会去追究评卷人的责任——监管他们的领导也是地球人啊,不要指望他们会为你“讨回公道”,按规矩,高考查卷只查是否加错总分,不查是否批改错误,就是这个原因。
所以,高考要胜利,必须过三关:实力关,书写关,填志愿关。而书写就是最重要的一关啊。
以上“八化”,洋洋洒洒,貌似详尽,实则挂一漏万.例如,应试得分策略问题,应试心理问题,又例如“题型模式化”问题,就因为受篇幅限制,不可能详细论述,因此写得简单,但读者应该知道它的极端重要性.又,各人情况千差万别,对策也就因人而异,各有侧重.总之,运用之妙,存乎一心,愿你好运!
附注:这份资料,不要外传,但你可以珍藏起来,留给你的后代将来参考。
2012年3月1日修订
作者 黎国之 自助式立体几何万能学具发明人与开发者
展开全部
其实应付考试真的是一件很简单的事情,我中考高考之前成绩都是一般,但是最好考试我都可以爆发。不外乎就是针对自己总结试卷结构,这样子,你把你以往的考试试卷拿出来对比。很容易发现自己到底哪里才是漏洞,然后就是把这些错题归纳总结到一起,一一解决。注意必须是自己解决,不懂的话,不管你问谁把他问懂、这之后的话就是在你总结的基础上进行题型扩散,一个知识点无论他怎么考,只要你掌握了这个知识点的主干,然后慢慢去丰满他。那你以后遇到他就ok了。
很多人有一个误区就是喜欢做很多题,但是你想过没有,你会的知识点无论你在怎么巩固都是浪费时间、你现在主要任务就是不断的筛选出自己的知识点漏洞,一个一个补上。你就这样想,我发现一个洞就多得一分,那要提高成绩还不是手到擒来!
这是我一个过来人的经验,能不能听进去看自己吧!
很多人有一个误区就是喜欢做很多题,但是你想过没有,你会的知识点无论你在怎么巩固都是浪费时间、你现在主要任务就是不断的筛选出自己的知识点漏洞,一个一个补上。你就这样想,我发现一个洞就多得一分,那要提高成绩还不是手到擒来!
这是我一个过来人的经验,能不能听进去看自己吧!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
抓基础,把老师课上讲解的基本的知识点搞清楚,课后再联系相应的练习,这样坚持下去,你的成绩肯定会提高一些的。如果你想有更大幅度的提高的话,那得看你的基础如何了,如果以前的数学基础就不是太好的话,估计这100来天也不太够用;若是你的基础还可以的话,建议你买些资料自己做做,当然这个资料上的题目做好是难题,就是压轴的综合题,而且资料上最好有详细的方法解答,思路点拨之类的总结,最好你看完之后要有所体会,有所总结,下次遇到类似的题目,就往这种方法上联想
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
查找自己在哪些方面存在问题,集中精力解决。其他按照老师的步骤进行复习巩固。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-07-27 · 技能让生活更美好,从万通走向世界
安徽万通高级技工学校
安徽万通汽车专修学院,隶属于新华教育集团,坐落于科教名城合肥市,始建于1988年,是汽车技术人才定点培养基地、汽车行业示范职教集团、汽车职教集团常务理事单位。汽车工程学会理事单位。
向TA提问
关注
展开全部
中考仅仅是人生的一个转折点,每个人都是一个一个独立的个体,中考失利,你可以选择上私立高中,也可以选择上职业学校,有的地方是允许复读的哈。
除此之外,还可以学一些热门专业,比如说智能网联,比如说新能源汽车,都可以哈。
除此之外,还可以学一些热门专业,比如说智能网联,比如说新能源汽车,都可以哈。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询