求微分方程y导=x-y满足初始条件y(0)=0的特解,

 我来答
华源网络
2022-05-23 · TA获得超过5581个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:145万
展开全部
y'=x-y
即y'+y=x
特征方程为r+1=0,得r=-1
即y'+y=0的通解为Ce^(-x)
令y*=ax+b
代入原方程:a+ax+b=x
对比系数得:a=1,a+b=0,
得a=1,b=-1
故原方程的解为y=Ce^(-x)+x-1
y(0)=C-1=0,得;C=1
因此满足初始条件的特解为y=e^(-x)+x-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式