已知,函数f(x)=2sin(2x+π/6)+1求它在[0,π]上的单调递增。求大神
答案给f(x)=2sin(2x+π/6)+1记t=2x+π/6,t∈[π/6,2π+π/6]f(t)=2sin(t)+1f(t)的单调递增区间为:t∈[π/6,π/2]或...
答案给
f(x)=2sin(2x+π/6)+1
记t=2x+π/6,t∈[π/6,2π+π/6]
f(t)=2sin(t)+1
f(t)的单调递增区间为:
t∈[π/6,π/2]或t∈[3π/2,2π+π/6]
此时:
x∈[0,π/6]或x∈[2π/3,π]
我就想知道明明是t∈[π/6,2π+π/6]是咋个变成
t∈[π/6,π/2]或t∈[3π/2,2π+π/6]的 展开
f(x)=2sin(2x+π/6)+1
记t=2x+π/6,t∈[π/6,2π+π/6]
f(t)=2sin(t)+1
f(t)的单调递增区间为:
t∈[π/6,π/2]或t∈[3π/2,2π+π/6]
此时:
x∈[0,π/6]或x∈[2π/3,π]
我就想知道明明是t∈[π/6,2π+π/6]是咋个变成
t∈[π/6,π/2]或t∈[3π/2,2π+π/6]的 展开
2个回答
展开全部
t∈[π/6,2π+π/6]是t的取值范围
而t∈[π/6,π/2]或t∈[3π/2,2π+π/6]
是函数的单调增区间
∵sinα的单调递增区间为[-π/2+2kπ,π/2+2kπ]
∴k取0时,为[-π/2,π/2]得出t∈[π/6,π/2]
k取1时,为[3π/2,5π/2]得出t∈[3π/2,2π+π/6]
∴可得出t∈[π/6,π/2]或t∈[3π/2,2π+π/6]
而t∈[π/6,π/2]或t∈[3π/2,2π+π/6]
是函数的单调增区间
∵sinα的单调递增区间为[-π/2+2kπ,π/2+2kπ]
∴k取0时,为[-π/2,π/2]得出t∈[π/6,π/2]
k取1时,为[3π/2,5π/2]得出t∈[3π/2,2π+π/6]
∴可得出t∈[π/6,π/2]或t∈[3π/2,2π+π/6]
追问
请问k取0时是为[-π/2,π/2],那t咋个就从[π/6,2π+π/6]变成
t∈[π/6,π/2]的呢?我比较笨求讲解
追答
我白天不在,既然他给你讲解了就行了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
只帮你理解答案,不从解题的角度,你先不要管X,只考虑t,f(t)=2sin(t)+1的单调递增区间为t∈[π/6,π/2]或t∈[3π/2,2π+π/6],这个好理解吧?然后在考虑t=2x+π/6,t∈[π/6,π/2]或t∈[3π/2,2π+π/6]时,x∈[?]就行了
追问
额。我就是不懂f(t)=2sin(t)+1的单调递增区间为t∈[π/6,π/2]或t∈[3π/2,2π+π/6]是咋个从
t∈[π/6,2π+π/6]求出来的。。后面我都知道- -。。
呵呵我有点笨,求大神帮帮忙
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询