求极限的问题.当x趋近a时,求(sinx-sina)/x-a的极限

 我来答
黑科技1718
2022-06-22 · TA获得超过5908个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:83.1万
展开全部
方法一:利用和差化积公式,把sinx-sina化成2cos[(x+a)/2]·sin[(x-a)/2],然后用等价无穷小替换
lim(x→a) [(sinx-sina)/(x-a)]
=lim(x→a) 2cos[(x+a)/2]·sin[(x-a)/2]/(x-a)
=2cosa*lim(x→a) [sin[(x-a)/2]/(x-a)
=2cosa*(1/2)
=cosa
方法二:洛必达法则
lim(x→a) [(sinx-sina)/(x-a)]
=lim(x→a) [(sinx-sina)'/(x-a)']
=lim(x→a) cosx
=cosa
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式