求导arctany/x=根号[ln(x^2+y^2) ] .根号在ln外面的

 我来答
华源网络
2022-06-09 · TA获得超过5555个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:142万
展开全部
两边对x求导得
1/[1+(y/x)^2]*(y/x)'=1/[ln(x^2+y^2) ] *[ln(x^2+y^2) ] '
1/[1+(y/x)^2]*(y'x-y)/x^2=1/[2ln(x^2+y^2) ] *1/(x^2+y^2) *(x^2+y^2) '
1/[1+(y/x)^2]*(y'x-y)/x^2=1/[2ln(x^2+y^2) ] *1/(x^2+y^2) *(2x+2yy')
1/[x^2+y^2]*(y'x-y)=1/[2ln(x^2+y^2) ] *1/(x^2+y^2) *(2x+2yy')
(y'x-y)=1/[2ln(x^2+y^2) ] *(2x+2yy')
解出来y'即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式