求函数f(x)=sin(π/3+4x)+cos(4x-π/6)的最小正周期和递减区间
4个回答
展开全部
展开=sin60cos4x+sin4xcos60+cos4xcos30+sin4xsin30
=/3/2cos4x+1/2sin4x+/3/2cos4x+1/2sin4x
=/3cos4x+sin4x
=2(sin60cos4x+cos60sin4x)
=2sin(4x+60)
则,最小正周期 T=2π/w=π/2
递减区间是[(kπ/2)+(π/24),(kπ/2)+(7π/24)]
=/3/2cos4x+1/2sin4x+/3/2cos4x+1/2sin4x
=/3cos4x+sin4x
=2(sin60cos4x+cos60sin4x)
=2sin(4x+60)
则,最小正周期 T=2π/w=π/2
递减区间是[(kπ/2)+(π/24),(kπ/2)+(7π/24)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=sin(π/3+4x)+sin(4x-π/6)
=sin(π/3+4x)+cos(2x+π/3)
=√2sin(4x+7π/12)
=√2cos(4x+π/12)
最小正周期T=2π/4=π/2
2kπ<=4x+π/12<=2kπ+π
kπ/2-π/48<=x<=kπ/2+11π/48
递减区间 [kπ/2-π/48,kπ/2+11π/48] k∈Z
=sin(π/3+4x)+cos(2x+π/3)
=√2sin(4x+7π/12)
=√2cos(4x+π/12)
最小正周期T=2π/4=π/2
2kπ<=4x+π/12<=2kπ+π
kπ/2-π/48<=x<=kπ/2+11π/48
递减区间 [kπ/2-π/48,kπ/2+11π/48] k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
展开得,?3cos4x+sin4x
=2(?3/2cos4x+1/2sin4x)
=2sin(4x+π/6 )
T=π/2
=2(?3/2cos4x+1/2sin4x)
=2sin(4x+π/6 )
T=π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询