指出下列函数的间断点,并说明其类型.fx=x/sinx
1个回答
展开全部
对于函数f(x)=x/sinx,在区间(-2π,2π)上,
显然只有x= -π,0和π时,分母sinx=0,可能是间断点,
在x= -π和π时,sinx=0,而分子x不等于0,
故 x/sinx此时趋于无穷大,
即x= -π和x=π是f(x)=x/sinx的无穷间断点
而在x=0时,
f(x)=x/sinx 在x=0处的左右极限存在且相等(都为1),
所以x=0是f(x)=x/sinx 的可去间断点
显然只有x= -π,0和π时,分母sinx=0,可能是间断点,
在x= -π和π时,sinx=0,而分子x不等于0,
故 x/sinx此时趋于无穷大,
即x= -π和x=π是f(x)=x/sinx的无穷间断点
而在x=0时,
f(x)=x/sinx 在x=0处的左右极限存在且相等(都为1),
所以x=0是f(x)=x/sinx 的可去间断点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询