勾股定理逆定理证明方法

 我来答
大沈他次苹0B
2022-07-19 · TA获得超过7332个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:178万
展开全部

如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。最长边所对的角为直角。接下来分享勾股定理逆定理证明方法。

勾股定理逆定理证明方法

1.根据余弦定理,在△ABC中,cosC=(a²+b²-c²)÷2ab。由于a²+b²=c²,故cosC=0;因为0°<∠C<180°,所以∠C=90°。(证明完毕)

2.已知在△ABC中,a²+b²=c²,求证△ABC是直角三角形

证明:做任意一个Rt△A'B'C',使其直角边B'C'=a,A'C'=b,∠C'=90°。设A'B'=c'

在Rt△A'B'C'中,由勾股定理得,A'B‘²=B'C'²+A'C'²=a²+b²=c’²

一∵a²+b²=c²,∴c‘=c

在△ABC和A'B'C'中,∵AB=A'B',BC=B'C',AC=A'C',∴△ABC≌△A'B'C'

∴∠C=∠C'=90°

勾股定理的逆定理

勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a²+b²=c²,则△ABC是直角三角形。如果a²+b²>c²,则△ABC是锐角三角形。如果a²+b²<c²,则△abc是钝角三角形。

勾股定理的公式

基本公式

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a2+b2=c2。

完全公式

a=m,b=(m^2/k-k)/2,c=(m^2/k+k)/2①

其中m≥3

(1)当m确定为任意一个≥3的奇数时,k={1,m^2的所有小于m的因子}

(2)当m确定为任意一个≥4的偶数时,k={m^2/2的所有小于m的偶数因子}

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式