log以2为底0的对数是什么?
1个回答
展开全部
log以2为底0的对数 = -∞。
对数的相关介绍:
1.如果 α^x=N(α>0,且α≠1),那么数x叫做以α为底N的对数(logarithm),记作 x=log(a) N .其中,α叫做对数的底数,N叫做真数。且α>o,α≠1,N>0。
2.将以10为底的对数叫做常用对数(common logarithm),并把log(10) N 记为 lg N。
3.以e为底的对数称为自然对数(natural logarithm),并把log(e) N 记为 ln N。
零没有对数。
在实数范围内,负数无对数。在复数范围内,负数有对数。如:
㏑(-5)=㏑[(-1)*5]=㏑(-1)+㏑5=iπ+㏑5。
而事实上,当θ=(2k+1)π时(k∈Z),e^[(2k+1)πi]+1=0,这样,㏑(-1)的具有周期性的多个值,㏑(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:㏑(-5)=(2k+1)πi+㏑5。
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询