直线与圆的弦长的计算公式是什么啊?
展开全部
直线与圆的弦长公式是:弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1],其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,“││”为绝对值符号,“√”为根号。
弦长公式,指直线与圆锥曲线相交所得弦长d的公式。圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。
弦长公式:
抛物线y2=2px,过焦点直线交抛物。
线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2 y2=-2px,过焦点直线交抛物线于A。﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚。
x2=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2。
x2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询