设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是( )
解:∵4x2+y2+xy=1∴(2x+y)2-3xy=1令t=2x+y则y=t-2x∴t2-3(t-2x)x=1即6x2-3tx+t2-1=0∴△=9t2-24(t2-1...
解:∵4x2+y2+xy=1
∴(2x+y)2-3xy=1
令t=2x+y则y=t-2x
∴t2-3(t-2x)x=1
即6x2-3tx+t2-1=0
∴△=9t2-24(t2-1)=-15t2+24≥0
解得-
2105
≤t≤
2105
∴2x+y的最大值是
2105
为什么上面的△要大于等于0. 展开
∴(2x+y)2-3xy=1
令t=2x+y则y=t-2x
∴t2-3(t-2x)x=1
即6x2-3tx+t2-1=0
∴△=9t2-24(t2-1)=-15t2+24≥0
解得-
2105
≤t≤
2105
∴2x+y的最大值是
2105
为什么上面的△要大于等于0. 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询