定积分∫lnsin2xdx怎么求,积分上限是π/4,下限是0..
1个回答
展开全部
∫lnsin2xdx(0~π/4) (表示从0到π/4的定积分)
=∫ln(2sinx cosx)dx(0~π/4)
=π/4*ln2+∫lnsinxdx(0~π/4)+∫lncosxdx(0~π/4)
=π/4*ln2+∫lnsinxdx(0~π/4)+∫lnsinxdx(π/4~π/2) (对最后一个积分换元)
=π/4*ln2+∫lnsinxdx(0~π/2)
=π/4*ln2+2∫lnsin2xdx(0~π/4) (换元)
由第一个式子与最后一个式子相等即得
∫lnsin2xdx(0~π/4)=-π/4*ln2
=∫ln(2sinx cosx)dx(0~π/4)
=π/4*ln2+∫lnsinxdx(0~π/4)+∫lncosxdx(0~π/4)
=π/4*ln2+∫lnsinxdx(0~π/4)+∫lnsinxdx(π/4~π/2) (对最后一个积分换元)
=π/4*ln2+∫lnsinxdx(0~π/2)
=π/4*ln2+2∫lnsin2xdx(0~π/4) (换元)
由第一个式子与最后一个式子相等即得
∫lnsin2xdx(0~π/4)=-π/4*ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询