化简[2cos^4(x)-2cos²x+1/2]/[2tan(π/4-x)·sin²(π/4+x)]
1个回答
展开全部
[2cos^4(x)-2cos²x+1/2]/[2tan(π/4-x)·sin²(π/4+x)]
=1/2*[4cos^4(x)-4cos²x+1]/{2tan[(π/2-π/4)-x]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2tan[π/2-(π/4+x)]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cot(π/4+x)·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cos(π/4+x)·sin(π/4+x)}
=1/2*(cos2x)²/sin[2(π/4+x)]
=1/2*(cos2x)²/sin[π/2+2x]
=1/2*(cos2x)²/(cos2x)
=1/2*cos2x
=1/2*[4cos^4(x)-4cos²x+1]/{2tan[(π/2-π/4)-x]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2tan[π/2-(π/4+x)]·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cot(π/4+x)·sin²(π/4+x)}
=1/2*[2cos²x-1]²]/{2cos(π/4+x)·sin(π/4+x)}
=1/2*(cos2x)²/sin[2(π/4+x)]
=1/2*(cos2x)²/sin[π/2+2x]
=1/2*(cos2x)²/(cos2x)
=1/2*cos2x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询