什么是向量空间向量空间的定义

 我来答
华源网络
2022-07-23 · TA获得超过5593个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
  向量空间又称线性空间,是线性代数的中心内容和基本概念之一。那么你对向量空间了解多少呢?以下是由我整理关于什么是向量空间的内容,希望大家喜欢!

  向量空间的简介
  在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。

  向量空间它的理论和 方法 在科学技术的各个领域都有广泛的应用。
  向量空间的线性映射
  若 V 和 W 都是域F上的向量空间,可以设定由V到W的线性变换或“线性映射”。这些由V到W的映射都有共同点,就是它们保持总和及标量商数。这个集合包含所有由V到W的线性映射,以 L(V, W) 来描述,也是一个域F上的向量空间。当 V 及 W 被确定后,线性映射可以用矩阵来表达。

  同构是一对一的一张线性映射。如果在V 和W之间存在同构,我们称这两个空间为同构;域F上每一n维向量空间都与向量空间F同构。

  一个在F场的向量空间加上线性映射就可以构成一个范畴,即阿贝尔范畴。
  向量空间的额外结构
  研究向量空间很自然涉及一些额外结构。额外结构如下:

  一个实数或复数向量空间加上长度概念。就是范数称为赋范向量空间。

  一个实数或复数向量空间加上长度和角度的概念,称为内积空间。

  一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为拓扑向量空间。

  一个向量空间加上双线性算子(定义为向量乘法)是个域代数。
  向量空间的公理化定义
  设F是一个域。一个F上的向量空间是一个集合V和两个运算:

  向量加法: V + V → V, 记作 v + w, ∃ v, w∈V

  标量乘法: F × V → V, 记作 a·v, ∃a∈F, v∈V

  符合下列公理 (∀ a, b ∈ F 及 u, v, w ∈ V):

  向量加法结合律:u + (v + w) = (u + v) + w;

  向量加法交换律:v + w = w + v;

  向量加法的单位元:V 里有一个叫做零向量的 0,∀ v ∈ V , v + 0 = v;

  向量加法的逆元素:∀v∈V, ∃w∈V,使得 v + w = 0;

  标量乘法分配于向量加法上:a(v + w) = a v + a w;

  标量乘法分配于域加法上: (a + b)v = a v + b v;

  标量乘法一致于标量的域乘法: a(b v) = (ab)v;

  标量乘法有单位元: 1 v = v, 这里 1 是指域 F 的乘法单位元。

  有些教科书还强调以下两个公理:

  V 闭合在向量加法下:v + w ∈ V

  V 闭合在标量乘法下:a v ∈ V

  更抽象的说,一个F上的向量空间是一个F-模。V的成员叫作向量,而F的成员叫作标量。若F是实数域R,V称为实向量空间;若F是复数域C,V称为复向量空间;若F是有限域,V称为有限域向量空间;对一般域F,V称为F-向量空间。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式