设f(x)是[0,1]上的连续函数且f(x)=x^2 +不定积分(下限0,上限1)∫xf(x)dx
展开全部
解:因为定积分∫(0,1)xf(x)dx是一个常数,因此设C=∫(0,1)xf(x)dx
∴f(x)=x∧2+C.①
两边同时取定积分(上限1,下限0),得
∫(0,1)f(x)dx=∫(0,1)x∧2dx+∫(0,1)Cdx
∴∫(0,1)f(x)dx=1/3+C.②
对①式两边同乘以x,得,
xf(x)=x∧3+Cx
两边再次同时取定积分∫(0,1),得
∫(0,1)xf(x)dx=∫(0,1)x∧3dx+∫(0,1)Cxdx.
∴C=1/4+C/2
∴C=1/2.,带入式,得
∫(0,1)f(x)dx=1/3+1/2=5/6.
∴f(x)=x∧2+C.①
两边同时取定积分(上限1,下限0),得
∫(0,1)f(x)dx=∫(0,1)x∧2dx+∫(0,1)Cdx
∴∫(0,1)f(x)dx=1/3+C.②
对①式两边同乘以x,得,
xf(x)=x∧3+Cx
两边再次同时取定积分∫(0,1),得
∫(0,1)xf(x)dx=∫(0,1)x∧3dx+∫(0,1)Cxdx.
∴C=1/4+C/2
∴C=1/2.,带入式,得
∫(0,1)f(x)dx=1/3+1/2=5/6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |