已知tan(a+兀/4)=1/2且-兀/2<a<0则(2sina∧2+sin2a)/sin(a-兀/4)的值
展开全部
∵tan(a+兀/4)=1/2
∴(2sin^2a+sin2a)/sin(a-兀/4)
=(2sin^2a+2sinacosa)/(sinacosπ/4-cosasinπ/4)
=2sina(sina+cosa)/.[√2/2(sina-cosa)]
=2√2(sina+cosa)/(sina-cosa)
=2√2(sina/cosa+1)/(sina/cosa-1)
=-2√2(1+tana)/(1-tana)
=-2√2(tanπ/4+tana)/(1-tanπ/4tana)
=-2√2tan(a+π/4)
=-2√2*1/2
=-√2
∴(2sin^2a+sin2a)/sin(a-兀/4)
=(2sin^2a+2sinacosa)/(sinacosπ/4-cosasinπ/4)
=2sina(sina+cosa)/.[√2/2(sina-cosa)]
=2√2(sina+cosa)/(sina-cosa)
=2√2(sina/cosa+1)/(sina/cosa-1)
=-2√2(1+tana)/(1-tana)
=-2√2(tanπ/4+tana)/(1-tanπ/4tana)
=-2√2tan(a+π/4)
=-2√2*1/2
=-√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询