求矩阵的范数的公式是什么?

 我来答
河传杨颖
高粉答主

2022-10-03 · 说的都是干货,快来关注
知道小有建树答主
回答量:745
采纳率:100%
帮助的人:21.4万
展开全部

||a|| = √(a,a) = √a^Ta

其中 (a,a) 是a与a的内积,是a的各分量的平方之和

如a=(X1,X2,X3),则||a||=√X1^2+X2^2+X3^3

矩阵范数不可以由向量范数来诱导,比如常用的Frobenius范数(也叫Euclid范数,简称F-范数或者E-范数):║A║F= ( ∑∑ aij^2 )^1/2 (A全部元素平方和的平方根)。

容易验证F-范数是相容的,但当min{m,n}>1时F-范数不能由向量范数诱导(||E11+E22||F=2>1)。可以证明任一种矩阵范数总有与之相容的向量范数。

扩展资料

谱半径和范数的关系是以下几个结论:

定理1:谱半径不大于矩阵范数,即ρ(A)≤║A║。

因为任一特征对λ,x,Ax=λx,可得Ax=λx。两边取范数并利用相容性即得结果。

定理2:对于任何方阵A以及任意正数e,存在一种矩阵范数使得║A║<ρ(A)+e。

定理3(Gelfand定理):ρ(A)=lim_{k->∞} ║A^k║^{1/k}。

利用上述性质可以推出以下两个常用的推论:

推论1:矩阵序列 I,A,A^2,…A^k,… 收敛于零的充要条件是ρ(A)<1。

推论2:级数 I+A+A^2+... 收敛到(I-A)^{-1}的充要条件是ρ(A)<1。

参考资料来源:百度百科-矩阵范数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式