设a为实数,函数ex(e的x次方)—2x+2a,a为实数,求证:当a>(In2)—1且x>0时,?
展开全部
f的导函数f'=ex-2
当 ex-2=0时 即x=ln2是 导函数f'=0
当 ex-20 原函数f为增函数
极小值为f(ln2)=2-2ln2+2a
令 g(x)=e^x-(x^2-2ax+1)
函数g的导函数g'=ex-(2x-2a) 为函数f
当a>ln2-1时 原函数极小值f(ln2)=2-2ln2+2a>2-2ln2+2(ln2-1)=0
即导函数g'>0
函数g在R上为增函数
g(0)=1-(0-0+1)=0
对于任意的x>0
g(x)>g(0)=0恒成立
∴ ex-(x2-2ax+1)>0 即ex>x2-2ax+1
得证,1,(1)∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln2) ln2 (ln2,+∞)
f′(x) - ...,1,设a为实数,函数ex(e的x次方)—2x+2a,a为实数,求证:当a>(In2)—1且x>0时,
ex(e的x次方)>x2(x的平方)—2ax+1
当 ex-2=0时 即x=ln2是 导函数f'=0
当 ex-20 原函数f为增函数
极小值为f(ln2)=2-2ln2+2a
令 g(x)=e^x-(x^2-2ax+1)
函数g的导函数g'=ex-(2x-2a) 为函数f
当a>ln2-1时 原函数极小值f(ln2)=2-2ln2+2a>2-2ln2+2(ln2-1)=0
即导函数g'>0
函数g在R上为增函数
g(0)=1-(0-0+1)=0
对于任意的x>0
g(x)>g(0)=0恒成立
∴ ex-(x2-2ax+1)>0 即ex>x2-2ax+1
得证,1,(1)∵f(x)=ex-2x+2a,x∈R,
∴f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.
于是当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln2) ln2 (ln2,+∞)
f′(x) - ...,1,设a为实数,函数ex(e的x次方)—2x+2a,a为实数,求证:当a>(In2)—1且x>0时,
ex(e的x次方)>x2(x的平方)—2ax+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询