什么是根的判别式?
1个回答
展开全部
根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。
一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示(读做“delta”)。
扩展资料
一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0根的判别式,通常用希腊字母“Δ”表示它,即Δ=b2-4ac.
当Δ>0时,方程ax2+bx+c=0(a≠0)有两个不等的实数根;
当Δ=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根;
当Δ<0时,方程ax2+bx+c=0(a≠0)无实数根.
例题讲解:已知关于x的一元二次方程(x-3)(x-2)=|m|。
求证:对于任意实数m,方程总有两个不相等的实数根;
证明:原方程可化为
x2-5x+6-|m|=0,(很重要的的一步)
∴Δ=(-5)2-4×1×(6-|m|)
=25-24+4|m|
=1+4|m|.
∵ |m|≥0,
∴ 1+4|m|>0.
参考资料百度百科 -判别式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询