判断:1、如线性规划的原问题存在可行解,则其对偶问题也一定存在可行解。
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
错。
根据若对偶理论,对偶问题都具有可行解,则优化目标相等的可行解就是最优解,关键是可行解可能有无限个,因此该说法错误。
对偶问题的弱对偶性,其推论:原问题有可行解且目标函数值无界(具有无界解),则其对偶问题无可行解。
平移直线y=-kx+P时,直线必须经过可行域,对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
扩展资料:
对偶问题:每一个线性规划问题都存在一个与其对偶的问题,原问题与对偶问题对一个实际问题从不同角度提出来,并进行描述,组成一对互为对偶的线性规划问题。
对偶空间:设V为数域P上一个n 维线性空间。V上全体线性函数组成的集合记作L(V,P)。定义在L(V,P)上的加法和数量乘法:(f+g)(a)=f(a)+g(a),(kf)(a)=kf(a),则L(V,P)也是数域P上的线性空间。这样构造的L(V,P)就称为V的对偶空间。
参考资料来源:百度百科-对偶
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询