设函数f(x)在[0,1]上可导,对于[0,1]上每一点x,都有0

 我来答
大沈他次苹0B
2022-09-13 · TA获得超过7338个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:179万
展开全部
令 F(x) = f(x) - x,F(0) > 0,F(1) 0,F(x)在[0,1]上可导=>连续,
故至少在(0,1)内有一点ξ,使得 F(ξ) = 0,即 f(ξ) = ξ.
下面用反证法证明 ξ 只有一个.
假设存在ξ1,ξ2∈(0,1) ,F(ξ1) =0,且 F(ξ2) = 0.
由罗尔中值定理,必存在 η ∈(ξ1,ξ2),F '(η) = f '(η) - 1 = 0
=> f '(η) = 1 这与 f(x)的导数不为1 矛盾,假设错误.
因此在(0,1)内有唯一点,使得 f(ξ) = ξ.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式