一到二十的因数
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
1的因数:1
2的因数:1,2
3的因数:1,3
4的因数:1,2,4
5的因数:1,5
6的因数:1,2,3
7的因数:1,7
8的因数:1,2,4,8
9的因数:1,3,9
11的因数:1,11
12的因数:1,2,3,4,6,12
13的因数:1,13
14的因数:1,2,7,14
15的因数:1,3,5,15
16的因数:1,2,4,8,16
17的因数:1,17
18的因数:1,2,3,6,9,18
19的因数:1,19
20的因数:1,2,4,5,10,20
扩展资料:
一公因数:
定义:两个或多个整数公有的因数叫做它们的公因数。
两个或多个整数的公因数里最大的那一个叫做它们的最大公因数。
推论:1是任意个数的整数之公因数。
两个成倍数关系的非零自然数之间,小的那一个数就是这两个数的最大公因数。
二,整数:
整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、?、-n、?(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
奇偶性:
1. 奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,奇数×奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差为奇数,偶数个奇数的和、差为偶数;
2. 奇数的平方都可以表示成 的形式,偶数的平方可以表示为 或 的形式;
3. 若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;一个整数的平方根若是整数,则两者具有相同的奇偶性。
三,质数的定义:
质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。
质数具有许多独特的性质:
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
(3)质数的个数是无限的。
(6)若n为大于或等于2的正整数,在n到 之间至少有一个质数。
(8)所有大于10的质数中,个位数只有1,3,7,9。