叙述并证明等差数列的求和公式?

 我来答
世纪网络17
2022-10-24 · TA获得超过5947个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
通项公式:  An=A1+(n-1)d   An=Am+(n-m)d   等差数列的前n项和:  Sn=[n(A1+An)]/2; Sn=nA1+[n(n-1)d]/2   等差数列求和公式:等差数列的和=(首数+尾数)*项数/2;   项数的公式:等差数列的项数=[(尾数-首数)/公差]+1.  化简得(n-1)an-1-(n-2)an=a1,这对于任一N均成立   当n取n-1时式子变为,(n-3)an-1-(n-2)an-2=a1=(n-2)an-(n-1)an-1   得   2(n-2)an-1=(n-2)*(an+an-2)   当n大于2时得2an-1=an+an-2 显然证得它是等差数列   和=(首项+末项)×项数÷2   项数=(末项-首项)÷公差+1   首项=2和÷项数-末项   末项=2和÷项数-首项   末项=首项+(项数-1)×公差   性质:  若 m、n、p、q∈N   ①若m+n=p+q,则am+an=ap+aq   ②若m+n=2q,则am+an=2aq   注意:上述公式中an表示等差数列的第n项.  求和公式   Sn=(a1+an)n/2   Sn=n(2a1+(n-1)d)/2; d=公差   Sn=An2+Bn; A=d/2,B=a1-(d/2),2,通项公式:   An=A1+(n-1)d   An=Am+(n-m)d   等差数列的前n项和:   Sn=[n(A1+An)]/2; Sn=nA1+[n(n-1)d]/2   等差数列求和公式: 等差数列的和=(首数+尾数)*项数/2;   项数的公式: 等差数列的项数=[(尾数-首数)/公差]+1.   化简得(n-1)an-1-(n-2)an=a1,这对于任一N均成立   当n取n-1时式子...,1,首项加末项乘项数除以二(比较容易记的公式),证明的话去看高斯求和事例,0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式