数学建模如何建立模型?

 我来答
抛下思念17
2022-10-26 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6686
采纳率:99%
帮助的人:38.8万
展开全部
问题一:数学建模怎么做啊? 刚参加完九月份的全国大学生数学建模竞赛。一份基本的的数学建模论文要包含以下几个方面:
摘要,问题的背景与提出,问题的分析,模型的假设,符号说明,模型的建立与求解,模型的评价与推广,参考文献。
正规的数学建模论文篇幅一般在20页以上。考虑到你读初三,老师的要求不会这么高,而且你的能力应该还有所欠缺。我的建议为你按照自己实际情况选择一个有一定挑战性的题目,题目的性质类似于应用题,但又和普通的应用题不同,可以没有确定答案,针对问题本身做一些分析和探讨,最好能和实际相结合。
要注意的是假设要合理,要有数学模型(包括一些方程,不等式等),要有分析思路,并且要对自己建立的模型进行优缺点评价,最好能做相应推广。

问题二:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...>>

问题三:怎么建立一个好的数学模型? 一个好的数学模型,首先应该是可以把所提问题解决的,只有能解决问题的模型才是好的模型。其次,就在于模型的创造性,创造性并不是说你非得自己找出个新的方法或者算法来,而是即使你用的是久的算法,但是你用在一个新的领域,并且很好的解决了问题,具有很好的适应性,那样就是一个好的数学模型。注意,数学模型可能是公式,也可能是某种算法,当然也可能是图表类的东西。

问题四:数学建模的一般步骤是什么?? 模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用与推广
应用方式因问题的性质和建模的目的而异。而模型的推广就是在现有模型的基础上对模型有有一个更加全面,考虑更符合现实情况都适用的模型。

问题五:支北是什么? 5分 福州话里是脏话也..
形容女人的....

问题六:常见的建立数学模型的方法有哪几种 ―般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式