化简1+sinθ-cosθ/1+sinθ+cosθ详细过程.
1个回答
展开全部
应用公式:
sina=2sina/2*cosa/2
cosa=2(cosa/2)^2-1=1-2(sina/2)^2
(1+sinθ-cosθ0/(1+sinθ+cosθ)
=(1+2sinθ/2*cosθ/2-1+2sin^2θ/2)/(1+2sinθ/2*cosθ/2+2cos^2θ/2-1)
=(2sinθ/2*cosθ/2+2sin^2θ/2)/(2sinθ/2*cosθ/2+2cos^2θ/2)
=2sinθ/2(sinθ/2+cosθ/2)/2cosθ/2(sinθ/2+cosθ/2)
=sinθ/2/cosθ/2
=tanθ/2
sina=2sina/2*cosa/2
cosa=2(cosa/2)^2-1=1-2(sina/2)^2
(1+sinθ-cosθ0/(1+sinθ+cosθ)
=(1+2sinθ/2*cosθ/2-1+2sin^2θ/2)/(1+2sinθ/2*cosθ/2+2cos^2θ/2-1)
=(2sinθ/2*cosθ/2+2sin^2θ/2)/(2sinθ/2*cosθ/2+2cos^2θ/2)
=2sinθ/2(sinθ/2+cosθ/2)/2cosθ/2(sinθ/2+cosθ/2)
=sinθ/2/cosθ/2
=tanθ/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询