证明:当x≥0时,2xarctanx≥ln(1+x^2) 我来答 1个回答 #热议# 空调使用不当可能引发哪些疾病? 完满且闲雅灬抹香鲸P 2022-08-14 · TA获得超过1.7万个赞 知道小有建树答主 回答量:380 采纳率:0% 帮助的人:70.6万 我也去答题访问个人页 关注 展开全部 令f(x)=2xarctanx-ln(1+x^2) x≥0 于是f‘(x)=2arctanx x≥0 则 当x≥0 f‘(x)≥0 则f(x)在x≥0单调递增 故f(x)≥f(0)=0 因此在x≥0 2xarctanx-ln(1+x^2)≥0 即有x≥0时,2xarctanx≥ln(1+x^2) 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: