伺服电机用什么控制
2个回答
展开全部
问题一:伺服电机的控制方法有哪些 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加整个系统的定位精度。
4、谈谈3环。伺服电机一般为三个环控制,所谓三环就是3个闭环负反馈PID调节系统。最内的PID环就是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。
第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢
运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。
1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在......>>
问题二:伺服的控制方式有哪些? 日弘忠信伺服电机的伺服控制方式一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式,速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。
通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。
转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm;如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。
问题三:步进电机控制和伺服电机控制有什么区别? 步进电机,是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。伺服电动机,又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。最大的区别是伺服电机本身有反馈,步进没有反馈。闭环(不是真正的全闭环,如果需要全闭环需要在最后的机械机构上接光珊,编码器等反馈装置)总比开环精度高。上位控制:伺服多数可以接脉冲信号,也可以接模拟电压信号,步进只能接脉冲信号,现在很多简化的伺服也只能接脉冲信号。起动频率:一般只有步进有这么个参数,因为步进电机快速启动,也就是说你上来给他一个频率很高的脉冲,他会堵转,伺服基本上没有这个问题。工作环境:一般来说,伺服更脆弱些,容易出问题,工作环境恶劣的时候伺服就不是太好用,那种低温,高温,防暴,防水的伺服因为生产难度较大基本上都是天价,当然这种步进也不便宜。价格:小步进几十块钱的都有,伺服动辄几千。噪音:步进一般比伺服高,因为他毕竟是一步一步进的。
问题四:伺服电机是怎么操作的? 三菱伺服电机工作原理 伺服电机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 伺服电机是一个典型闭环反馈系统,减速齿轮组由电机驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动电机正向或反向地转动,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于为0,从而达到使伺服电机精确定位的目的。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线) 交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。
问题五:什么是伺服使能,请详细解释一下。 通常意义上,伺服使能就是通过给驱动器发信号,让驱动器对电机供电(励磁),也就是接到这个信号后,驱动器的电流环,速度环、位置环户到底是哪些环由驱动器控制模式决定)进入工作状态。
问题六:交流伺服电机是用什么来控制转速? 交流伺服电机是通过驱动器来达到运转的,当然不同型号的畅服电机有自身的额定转速,而转速的控制是通过伺服驱动器实现的。
常见的伺服驱动器调速方式有模拟电压控制,即通过调节伺服驱动器模拟量电压输入控制端的差分电压控制伺服电机运转在不同的转速;另一种即指令控制,通过给定指令,让伺服达到要求的转速;还有一种即脉冲信号控制,通过脉冲信号发生器或者另一套伺服产生的同步脉冲控制伺服电机的转速。
问题七:伺服电机的主要作用是什么 伺服电机的主要作用是随着电压的变化控制转速均匀稳定,伺服电机主要是靠脉冲来定位,当接受到一个脉冲电流,就会相应的旋转一个脉冲的对应角度,从而实现唯一,因为伺服电机本身也具有发出脉冲电流的功能,每当旋转一个角度都会发出对应数量的脉冲,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样就能够精确的控制电机的转动,精确的定位可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。伺服电机 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。
问题八:plc怎么控制伺服电机方向的 伺服位置控制可以在伺服控制器参数中进行设置,一般有脉冲+方向;正/反脉冲;90°相位脉冲。常用的就是脉冲+方向控制。即:PLC的一个输出点接伺服脉冲信号,方向信号为开关量,为ON正转,为OFF反转。
问题九:伺服驱动器采用位置控制模式时,伺服电机速度怎么控制 一般伺服系统的组成包括 伺服电机、伺服驱动器以及上位控制器。
伺服电机是执行元件,伺服驱动器是控制元件,上位则相当于人机界面了。
伺服驱动器里是有程序的,来控制电机的输出扭矩、转速以及方向等。
PLC在伺服驱动器的上一环,也有集成在伺服驱动器里的;
上位控制器则用于用户直观的输入参数来控制伺服驱动器发出指令。
不过你若是简单的只是想控制伺服电机的运转,只依靠伺服驱动器就可。伺服驱动器上有控制面板,可以用来设定参数并控制电机的转速、转向等。
2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加整个系统的定位精度。
4、谈谈3环。伺服电机一般为三个环控制,所谓三环就是3个闭环负反馈PID调节系统。最内的PID环就是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。
第2环是速度环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。
第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢
运动伺服一般都是三环控制系统,从内到外依次是电流环速度环位置环。
1、首先电流环:电流环的输入是速度环PID调节后的那个输出,我们称为“电流环给定”吧,然后呢就是电流环的这个给定和“电流环的反馈”值进行比较后的差值在电流环内做PID调节输出给电机,“电流环的输出”就是电机的每相的相电流,“电流环的反馈”不是编码器的反馈而是在驱动器内部安装在每相的霍尔元件(磁场感应变为电流电压信号)反馈给电流环的。
2、速度环:速度环的输入就是位置环PID调节后的输出以及位置设定的前馈值,我们称为“速度设定”,这个“速度设定”和“速度环反馈”值进行比较后的差值在速度环做PID调节(主要是比例增益和积分处理)后输出就是上面讲到的“电流环的给定”。速度环的反馈来自于编码器的反馈后的值经过“速度运算器”得到的。
3、位置环:位置环的输入就是外部的脉冲(通常情况下,直接写数据到驱动器地址的伺服例外),外部的脉冲经过平滑滤波处理和电子齿轮计算后作为“位置环的设定”,设定和来自编码器反馈的脉冲信号经过偏差计数器的计算后的数值在......>>
问题二:伺服的控制方式有哪些? 日弘忠信伺服电机的伺服控制方式一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式,速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。
通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。
转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm;如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。
问题三:步进电机控制和伺服电机控制有什么区别? 步进电机,是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。伺服电动机,又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。最大的区别是伺服电机本身有反馈,步进没有反馈。闭环(不是真正的全闭环,如果需要全闭环需要在最后的机械机构上接光珊,编码器等反馈装置)总比开环精度高。上位控制:伺服多数可以接脉冲信号,也可以接模拟电压信号,步进只能接脉冲信号,现在很多简化的伺服也只能接脉冲信号。起动频率:一般只有步进有这么个参数,因为步进电机快速启动,也就是说你上来给他一个频率很高的脉冲,他会堵转,伺服基本上没有这个问题。工作环境:一般来说,伺服更脆弱些,容易出问题,工作环境恶劣的时候伺服就不是太好用,那种低温,高温,防暴,防水的伺服因为生产难度较大基本上都是天价,当然这种步进也不便宜。价格:小步进几十块钱的都有,伺服动辄几千。噪音:步进一般比伺服高,因为他毕竟是一步一步进的。
问题四:伺服电机是怎么操作的? 三菱伺服电机工作原理 伺服电机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 伺服电机是一个典型闭环反馈系统,减速齿轮组由电机驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动电机正向或反向地转动,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于为0,从而达到使伺服电机精确定位的目的。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线) 交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。
问题五:什么是伺服使能,请详细解释一下。 通常意义上,伺服使能就是通过给驱动器发信号,让驱动器对电机供电(励磁),也就是接到这个信号后,驱动器的电流环,速度环、位置环户到底是哪些环由驱动器控制模式决定)进入工作状态。
问题六:交流伺服电机是用什么来控制转速? 交流伺服电机是通过驱动器来达到运转的,当然不同型号的畅服电机有自身的额定转速,而转速的控制是通过伺服驱动器实现的。
常见的伺服驱动器调速方式有模拟电压控制,即通过调节伺服驱动器模拟量电压输入控制端的差分电压控制伺服电机运转在不同的转速;另一种即指令控制,通过给定指令,让伺服达到要求的转速;还有一种即脉冲信号控制,通过脉冲信号发生器或者另一套伺服产生的同步脉冲控制伺服电机的转速。
问题七:伺服电机的主要作用是什么 伺服电机的主要作用是随着电压的变化控制转速均匀稳定,伺服电机主要是靠脉冲来定位,当接受到一个脉冲电流,就会相应的旋转一个脉冲的对应角度,从而实现唯一,因为伺服电机本身也具有发出脉冲电流的功能,每当旋转一个角度都会发出对应数量的脉冲,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样就能够精确的控制电机的转动,精确的定位可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。伺服电机 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。
问题八:plc怎么控制伺服电机方向的 伺服位置控制可以在伺服控制器参数中进行设置,一般有脉冲+方向;正/反脉冲;90°相位脉冲。常用的就是脉冲+方向控制。即:PLC的一个输出点接伺服脉冲信号,方向信号为开关量,为ON正转,为OFF反转。
问题九:伺服驱动器采用位置控制模式时,伺服电机速度怎么控制 一般伺服系统的组成包括 伺服电机、伺服驱动器以及上位控制器。
伺服电机是执行元件,伺服驱动器是控制元件,上位则相当于人机界面了。
伺服驱动器里是有程序的,来控制电机的输出扭矩、转速以及方向等。
PLC在伺服驱动器的上一环,也有集成在伺服驱动器里的;
上位控制器则用于用户直观的输入参数来控制伺服驱动器发出指令。
不过你若是简单的只是想控制伺服电机的运转,只依靠伺服驱动器就可。伺服驱动器上有控制面板,可以用来设定参数并控制电机的转速、转向等。
上海九么
2024-11-25 广告
2024-11-25 广告
九么电机更因应绿能及智能之巨浪来临,将持续布建「智能」、「高效动能」及「储能」相关产品之发展。在智能面,与国内外科研法人及大学合作,发展无人AGV载具、透通化管理平台及家用安全智能化系统平台。在动能上,已成功商品化的产品包括:小型齿轮减速异...
点击进入详情页
本回答由上海九么提供
2023-12-19 · 百度认证:深圳市合利士智能装备有限公司官方账号
关注
展开全部
伺服电机通常使用控制器进行控制。这个控制器可以是一个专门的硬件设备,也可以是一个软件程序,用于发送控制信号来驱动伺服电机按照指定的方式运动。
在具体实现上,控制器会接收来自外部的输入信号,例如位置传感器、速度传感器或其他类型的传感器输入,然后根据这些输入信号来计算出伺服电机应该如何运动。控制器会生成相应的控制信号,通过驱动器发送给伺服电机,从而控制电机的转动。
此外,控制器还可以接收来自伺服电机的反馈信号,例如电机的位置、速度等,这些反馈信号可以帮助控制器调整控制信号,以实现更精确的控制。
在具体实现上,控制器会接收来自外部的输入信号,例如位置传感器、速度传感器或其他类型的传感器输入,然后根据这些输入信号来计算出伺服电机应该如何运动。控制器会生成相应的控制信号,通过驱动器发送给伺服电机,从而控制电机的转动。
此外,控制器还可以接收来自伺服电机的反馈信号,例如电机的位置、速度等,这些反馈信号可以帮助控制器调整控制信号,以实现更精确的控制。
详情
- 官方电话
- 在线客服
-
官方服务
- 官方网站
- 电机设备
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |