如何求不定积分∫sinxdx/ x?
2个回答
展开全部
sinx/x的不定积分:
∫sinxdx/x
=-∫dcosx/x=-cosx/x+∫cosxd(1/x)
=-cosx/x+∫dsinx/x^2
=-cosx/x+sinx/x^2+2∫sinxdx/x^3
=-cosx/x+sinx/x^2-2cosx/x^3+2∫cosxd(1/x^3)
=-cosx/x+sinx/x^2-2cosx/x^3+6sinx/x^4+24∫sinxdx/x^5
=-cosx/x+sinx/x^2-2cosx/x^3+6sinx/x^4-24cosx/x^5+...+(2n-1)!*(-1)^(2n-1) *cosx/x^(2n-1)+(2n)!sinx/x^(2n)
∫sinxdx/x
=-∫dcosx/x=-cosx/x+∫cosxd(1/x)
=-cosx/x+∫dsinx/x^2
=-cosx/x+sinx/x^2+2∫sinxdx/x^3
=-cosx/x+sinx/x^2-2cosx/x^3+2∫cosxd(1/x^3)
=-cosx/x+sinx/x^2-2cosx/x^3+6sinx/x^4+24∫sinxdx/x^5
=-cosx/x+sinx/x^2-2cosx/x^3+6sinx/x^4-24cosx/x^5+...+(2n-1)!*(-1)^(2n-1) *cosx/x^(2n-1)+(2n)!sinx/x^(2n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询