求(1+3x^2)/x^2*(x^2+1)的不定积分
展开全部
∫ { (1+3x^2)/[x^2*(x^2+1) } dx
=∫ {3/(x^2+1) + 1/[x^2.(x^2+1)] } dx
=3arctanx + ∫dx/[x^2.(x^2+1)]
=3arctanx + ∫ [1/x^2 -1/(x^2-1) ]dx
=3arctanx -1/x - ∫ 1/(x^2-1) dx
let
x= secy
dx= secy tany dy
∫ 1/(x^2-1) dx
=∫ (secy/tany) dy
=∫ cscy dy
=-ln|cscy -coty | + C'
=-ln|x/ √(x^2-1) - 1/√(x^2-1) | + C'
∫ { (1+3x^2)/[x^2*(x^2+1) } dx
=3arctanx -1/x - ∫ 1/(x^2-1) dx
=3arctanx -1/x +ln|x/ √(x^2-1) - 1/√(x^2-1) | + C
=∫ {3/(x^2+1) + 1/[x^2.(x^2+1)] } dx
=3arctanx + ∫dx/[x^2.(x^2+1)]
=3arctanx + ∫ [1/x^2 -1/(x^2-1) ]dx
=3arctanx -1/x - ∫ 1/(x^2-1) dx
let
x= secy
dx= secy tany dy
∫ 1/(x^2-1) dx
=∫ (secy/tany) dy
=∫ cscy dy
=-ln|cscy -coty | + C'
=-ln|x/ √(x^2-1) - 1/√(x^2-1) | + C'
∫ { (1+3x^2)/[x^2*(x^2+1) } dx
=3arctanx -1/x - ∫ 1/(x^2-1) dx
=3arctanx -1/x +ln|x/ √(x^2-1) - 1/√(x^2-1) | + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询