如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=k x (k为常数,且k>0)
链接在这里:http://www.jyeoo.com/math/ques/detail/61d6841c-26b3-4ea0-b8a4-7a4f152692cd球别种方法...
链接在这里:http://www.jyeoo.com/math/ques/detail/61d6841c-26b3-4ea0-b8a4-7a4f152692cd
球别种方法,越简单越好,!!!!hurry up 展开
球别种方法,越简单越好,!!!!hurry up 展开
2013-03-29
展开全部
解:过点F作FD⊥BO于点D,EW⊥AO于点W,
∵
BE
BF
=
1
m
(m为大于l的常数),
∴
ME
DF
=
1
m
,
∵ME•EW=FN•DF,
∴
ME
DF
=
FN
EW
=
1
m
,
设E点坐标为:(x,my),则F点坐标为:(mx,y),
∴△CEF的面积为:S1=
1
2
(mx-x)(my-y)=
1
2
(m-1)2xy,
∵△OEF的面积为:S2=S矩形CNOM-S1-S△MEO-S△FON
=MC•CN-
1
2
(m-1)2xy-
1
2
ME•MO-
1
2
FN•NO
=mx•my-
1
2
(m-1)2xy-
1
2
x•my-
1
2
y•mx
=m2xy-
1
2
(m-1)2xy-mxy
=
1
2
(m2-1)xy
=
1
2
(m+1)(m-1)xy,
∴
S1
S2
=
12(m-1)2xy
12(m-1)(m+1)xy
=
m-1
m+1
.
故答案为:
m-1
m+1 .
∵
BE
BF
=
1
m
(m为大于l的常数),
∴
ME
DF
=
1
m
,
∵ME•EW=FN•DF,
∴
ME
DF
=
FN
EW
=
1
m
,
设E点坐标为:(x,my),则F点坐标为:(mx,y),
∴△CEF的面积为:S1=
1
2
(mx-x)(my-y)=
1
2
(m-1)2xy,
∵△OEF的面积为:S2=S矩形CNOM-S1-S△MEO-S△FON
=MC•CN-
1
2
(m-1)2xy-
1
2
ME•MO-
1
2
FN•NO
=mx•my-
1
2
(m-1)2xy-
1
2
x•my-
1
2
y•mx
=m2xy-
1
2
(m-1)2xy-mxy
=
1
2
(m2-1)xy
=
1
2
(m+1)(m-1)xy,
∴
S1
S2
=
12(m-1)2xy
12(m-1)(m+1)xy
=
m-1
m+1
.
故答案为:
m-1
m+1 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询