行列式求值 在线等 谢谢老师
第一个|a-3-101||-1a-310||01a-3-1||10-1a-3|第二个122…2222…2…………22…n-1222…2n...
第一个
|a-3 -1 0 1|
|-1 a-3 1 0|
|0 1 a-3 -1|
|1 0 -1 a-3|
第二个
1 2 2 … 2
2 2 2 … 2
… … … …
2 2 … n-1 2
2 2 … 2 n 展开
|a-3 -1 0 1|
|-1 a-3 1 0|
|0 1 a-3 -1|
|1 0 -1 a-3|
第二个
1 2 2 … 2
2 2 2 … 2
… … … …
2 2 … n-1 2
2 2 … 2 n 展开
展开全部
【1】
分割成2×2的矩阵就行了
|a-3 -1| |0 1|
|-1 a-3| |1 0|
|0 1| |a-3 -1|
|1 0| |a-3 -1|
对四个子行列式求值
=
|(a-3)²-1 -1|
|-1 (a-3)²-1|
=
[(a-3)²-1]²-1
=
(a-3)²[(a-3)²-2]
然后多项式相乘合并同类项即可
【2】
第二行全都是2
将其余行都减去第二行,得:
-1 0 0 0 ... 0
2 2 2 2 ... 2
0 0 1 0 ... 0
0 0 0 2 ... 0
.. .... ... .. . ..
0 0 0 0 ... n-2
观察可知,只有对角线相乘不为0
所以为 -2(n-2)!
速度回答,抄袭死全家
分割成2×2的矩阵就行了
|a-3 -1| |0 1|
|-1 a-3| |1 0|
|0 1| |a-3 -1|
|1 0| |a-3 -1|
对四个子行列式求值
=
|(a-3)²-1 -1|
|-1 (a-3)²-1|
=
[(a-3)²-1]²-1
=
(a-3)²[(a-3)²-2]
然后多项式相乘合并同类项即可
【2】
第二行全都是2
将其余行都减去第二行,得:
-1 0 0 0 ... 0
2 2 2 2 ... 2
0 0 1 0 ... 0
0 0 0 2 ... 0
.. .... ... .. . ..
0 0 0 0 ... n-2
观察可知,只有对角线相乘不为0
所以为 -2(n-2)!
速度回答,抄袭死全家
展开全部
(1)
r1-(a-3)r4,r2+r4
0 -1 a-3 1-(a-3)^2
0 a-3 0 a-3
0 1 a-3 -1
1 0 -1 a-3
按第1列展开, D=(-1)^(4+1)*
-1 a-3 1-(a-3)^2
a-3 0 a-3
1 a-3 -1
c3-c1
-1 a-3 2-(a-3)^2
a-3 0 0
1 a-3 -2
按第2行展开, D=(a-3)*
a-3 2-(a-3)^2
a-3 -2
r2-r1
a-3 2-(a-3)^2
0 -4+(a-3)^2
D=(a-3)^2[(a-3)^2-4] = (a-1)(a-5)(a-3)^2
(2)
所有行减第2行
D = -1*2*1*2*...*(n-2)
=-2 (n-2)!
r1-(a-3)r4,r2+r4
0 -1 a-3 1-(a-3)^2
0 a-3 0 a-3
0 1 a-3 -1
1 0 -1 a-3
按第1列展开, D=(-1)^(4+1)*
-1 a-3 1-(a-3)^2
a-3 0 a-3
1 a-3 -1
c3-c1
-1 a-3 2-(a-3)^2
a-3 0 0
1 a-3 -2
按第2行展开, D=(a-3)*
a-3 2-(a-3)^2
a-3 -2
r2-r1
a-3 2-(a-3)^2
0 -4+(a-3)^2
D=(a-3)^2[(a-3)^2-4] = (a-1)(a-5)(a-3)^2
(2)
所有行减第2行
D = -1*2*1*2*...*(n-2)
=-2 (n-2)!
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询