在复数范围内,方程z^2+|z|=0的根有几个(请解一下方程)
3个回答
展开全部
Z ^ 2 + | Z | = 0
设Z = X + IY代入原方程是:
X ^ 2-Y ^ 2 +2 xyi +√(X ^ 2 + Y ^ 2 )= 0
因此2XY = 0,X ^ 2-Y ^ 2 +√(X ^ 2 + Y ^ 2)= 0
X = 0,Y ^ 2 + | Y | = 0,得到:| Y | = 0或1,即y = 0,1,-1
为y = 0,χ^ 2 + | X | = 0,得到:| X | = 0,即:x = 0
因此共享的三种解决方法:Z = 0,我,我。
设Z = X + IY代入原方程是:
X ^ 2-Y ^ 2 +2 xyi +√(X ^ 2 + Y ^ 2 )= 0
因此2XY = 0,X ^ 2-Y ^ 2 +√(X ^ 2 + Y ^ 2)= 0
X = 0,Y ^ 2 + | Y | = 0,得到:| Y | = 0或1,即y = 0,1,-1
为y = 0,χ^ 2 + | X | = 0,得到:| X | = 0,即:x = 0
因此共享的三种解决方法:Z = 0,我,我。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
记z=a+ib
代入得:a^2+2abi-b^2+√(a^2+b^2)=0
比较实部与虚部,得:a^2-b^2+√(a^2+b^2)=0 1)
2ab=0 2)
故a=0或b=0
当a=0时,代入1),得:-b^2+|b|=0,得:b=0, 1, -1
当b=0时,代入1),得:a^2+|a|=0, 得:a=0
所以原方程的解为:z=0, i, -i
代入得:a^2+2abi-b^2+√(a^2+b^2)=0
比较实部与虚部,得:a^2-b^2+√(a^2+b^2)=0 1)
2ab=0 2)
故a=0或b=0
当a=0时,代入1),得:-b^2+|b|=0,得:b=0, 1, -1
当b=0时,代入1),得:a^2+|a|=0, 得:a=0
所以原方程的解为:z=0, i, -i
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询