怎样鉴定蛋白质的分子量?
测定蛋白质分子量的常用方法:
粘度法、凝胶过滤层析法、凝胶渗透色谱法、SDS-凝胶电泳、渗透压法、质谱法包括电喷雾离子化质谱技术和基质辅助激光解吸电离质谱技术、光散射法(多角度激光散射)、沉降法(超速离心法)。
1、粘度法
一定温度条件下,高聚物稀溶液的粘度与其分子量之间呈正相关性,随着分子量的增大,聚合物溶液的粘度增大。通过测定高聚物稀溶液粘度随浓度的变化,即可计算出其平均分子量(粘均分子量)。
如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为:
聚合物、溶剂性质有关,也和分子量大小有关。K值受温度的影响较明显,而值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解在0.5~1 之间。K与的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。 在无限稀释条件下:
优缺点:该方法操作简单、设备价格较低,通常不需要标准样品,但无法测定聚合物的分子量分布。
2、凝胶过滤层析法
对同一类型的化合物,洗脱特性与组分的分子量有关,流过凝胶柱时,按分子量大小顺序流出,分子量大的走在前面。Ve与分子量的关系可用下式表示: V e=K1—K2logMr
K1与K2为常数,Mr为分子量,Ve也可用Ve—Vo(分离体积),Ve/Vo(相对保留体积),Ve/Vt(简化的洗脱体积,它受柱的填充情况的影响较小)或Kav代替,与分子量的关系同上式,只是常数不同。凝胶层析主要决定于溶质分子的大小,每一类型的化合物如球蛋白类,右旋糖酐类等都有它自己的特殊的选择曲线,可用以测定未知物的分子量,测定时以使用曲线的直线部分为宜。
优缺点:凝胶层析技术操作方便,设备简单,样品用量少,周期短,重复性能好,条件温和,一般不引起生物活性物质的变化,而且有时不需要纯物质,用一粗制品即可,目前已得到相当广泛的应用。凝胶层析法测定分子量也有一定的局限性,在pH6—8的范围内,线性关系比较好,但在极端pH时,一般蛋白质有可能因变性而偏离。糖蛋白在含糖量超过5%时,测得分子量比真实的要大,铁蛋白则与此相反,测得的分子量比真实的要小。
3、凝胶渗透色谱法
分子量的多分散性是高聚物的基本特征之一。聚合物的性能与其分子量和分子量分布密切相关。
SEC法是按分子尺寸大小分离的,即淋出体积与分子线团体积有关,利用Flory的粘度公式:
K1、K2、α1、α2可以从手册查到,从而由第一种聚合物的M-Ve校正曲线,换算成第二种聚合物的M-Ve曲线,即从聚苯乙稀标样作出的M-Ve校正曲线,可以换算成各种聚合物的校正曲线。
优缺点:凝胶渗透色谱法分离速度快、分析时间短、重现性好,进样量少、自动化程度高。但设备投入较大,价格较高。
4、SDS-凝胶电泳法
SDS是十二烷基硫酸钠的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而使其电泳迁移率只取决于分子大小这一因素,根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。
优缺点:实验成本较低,仪器设备也相对很简单,一套电泳装置即可。但是精确程度相对较低,好的电泳图谱需要一定的技术。
5、渗透压法
在一种理想溶液中,渗透压与溶质浓度成正比。但是实际上蛋白质溶液与理想溶液有较大的偏差。在溶质浓度不大时,它们的关系可用下式表示:
当c 趋向于0时,RTKc 趋向于0,但π/c 不趋向于0,而是趋向于一定值。测定几个不同浓度下的渗透压,以π/c对c作图,并外推至c为0时的π/c,再代入上式求得Mr。
优缺点:操作简单、快捷,实验成本低,但准确度较差,受外界温度影响较大,且要准确配置蛋白质溶液。
6、超速离心沉降法
利用超速离心沉降法测蛋白质的分子量是在较低离心转速下进行的(8000~20000r/min),离心开始时,分子颗粒发生沉降,一段时间以后,沉降的结果造成了浓度梯度,因而产生了蛋白质分子反向扩散运动,当反向扩散与离心沉降达到平衡时,浓度梯度就固定不变了。
7、光散射法
主要基于染料阴离子在蛋白质等电点前与肽链上带正电荷的基团上的结合作用.。此时生色团聚集于蛋白质分子上引起共振散射光增强,它与核酸不同的是生色团必须是带负电荷的阴离子。
8、电喷雾离子化质谱技术
电喷雾离子化质谱技术(ESI-MS)是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相的质谱技术。ESI-MS 测定蛋白质大分子是根据一簇多电荷的质谱峰群,通过解卷积的方式计算得到蛋白质的分子量,由于ESI-MS可以产生多电荷峰,因此使得测试的分子质量范围大大扩大。
优缺点:(1)对样品的消耗少,不会造成样品的大量浪费;(2)对样品分子质量测试灵敏度、分辨力和准确度都相当高;(3)能够方便地与多种分离技术联用,如毛细管电泳、高效液相色谱等,是解决非挥发性、热不稳定性、极性强的复杂组分化合物的定性定量的高灵敏度检测方法。
9、基质辅助激光解吸电离质谱技术
基质辅助激光解吸电离质谱技术(MALDI-MS)是将待测物悬浮或溶解在一个基体中,基体与待测物形成混晶,当基体吸收激光的能量后,均匀传递给待测物,使待测物瞬间气化并离子化。基体的作用在于保护待测物不会因过强的激光能量导致化合物被破坏。MALDI的原理是用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,而使生物分子电离的过程。TOF的原理是离子在电场作用下加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测即测定离子的质荷比(M/Z)与离子的飞行时间成正比,检测离子。
优缺点:(1)同ESI-MS 一样对样品的消耗很少;(2)随着质量分析器的不断改进、新的基质的不断发现和应用以及延迟萃取技术的使用,使得MALDI-MS 的最高分辨率不断提高,甚至超过ESI-MS;(3)MALDI-MS 单电荷峰占主要部分,碎片峰少,非常有利于对复杂混合物的分析,且能忍受较高浓度的盐、缓冲剂和其他难挥发成分,降低了对样品预处理的要求;(4)MALDI-TOF 质谱对生物大分子分子量的测定范围是所有测试技术中最广的。
2024-11-30 广告